The China Mail - 100 ans après, la physique quantique reste un mystère

USD -
AED 3.672498
AFN 65.999546
ALL 83.886299
AMD 382.569343
ANG 1.789982
AOA 916.999667
ARS 1450.724895
AUD 1.535992
AWG 1.8025
AZN 1.703625
BAM 1.701894
BBD 2.013462
BDT 121.860805
BGN 1.698675
BHD 0.376969
BIF 2951
BMD 1
BND 1.306514
BOB 6.907654
BRL 5.340706
BSD 0.999682
BTN 88.718716
BWP 13.495075
BYN 3.407518
BYR 19600
BZD 2.010599
CAD 1.40972
CDF 2221.000107
CHF 0.8083
CLF 0.024025
CLP 942.260127
CNY 7.12675
CNH 7.124335
COP 3834.5
CRC 501.842642
CUC 1
CUP 26.5
CVE 96.374981
CZK 21.130974
DJF 177.719889
DKK 6.481435
DOP 64.297733
DZD 130.702957
EGP 47.350598
ERN 15
ETB 153.125026
EUR 0.868055
FJD 2.281097
FKP 0.766404
GBP 0.765345
GEL 2.714973
GGP 0.766404
GHS 10.924959
GIP 0.766404
GMD 73.496433
GNF 8691.000207
GTQ 7.661048
GYD 209.152772
HKD 7.774794
HNL 26.359887
HRK 6.537806
HTG 130.911876
HUF 335.451502
IDR 16695.1
ILS 3.253855
IMP 0.766404
INR 88.641051
IQD 1310
IRR 42112.439107
ISK 127.05977
JEP 0.766404
JMD 160.956848
JOD 0.709027
JPY 153.633017
KES 129.201234
KGS 87.449557
KHR 4027.000211
KMF 427.999878
KPW 900.033283
KRW 1447.48028
KWD 0.30713
KYD 0.83313
KZT 525.140102
LAK 21712.500514
LBP 89549.999727
LKR 304.599802
LRD 182.625016
LSL 17.379986
LTL 2.95274
LVL 0.60489
LYD 5.455014
MAD 9.301979
MDL 17.135125
MGA 4500.000656
MKD 53.533982
MMK 2099.044592
MNT 3585.031206
MOP 8.006805
MRU 38.249781
MUR 45.999702
MVR 15.404977
MWK 1736.000423
MXN 18.58737
MYR 4.18301
MZN 63.960022
NAD 17.380215
NGN 1440.729964
NIO 36.770288
NOK 10.170899
NPR 141.949154
NZD 1.7668
OMR 0.384495
PAB 0.999687
PEN 3.376505
PGK 4.216027
PHP 58.845981
PKR 280.85006
PLN 3.69242
PYG 7077.158694
QAR 3.640957
RON 4.414195
RSD 101.74198
RUB 81.125016
RWF 1450
SAR 3.750543
SBD 8.223823
SCR 13.740948
SDG 600.503506
SEK 9.536655
SGD 1.304925
SHP 0.750259
SLE 23.200677
SLL 20969.499529
SOS 571.507056
SRD 38.558019
STD 20697.981008
STN 21.45
SVC 8.747031
SYP 11056.895466
SZL 17.38022
THB 32.350333
TJS 9.257197
TMT 3.5
TND 2.960056
TOP 2.342104
TRY 42.11875
TTD 6.775354
TWD 30.898017
TZS 2459.806973
UAH 42.064759
UGX 3491.230589
UYU 39.758439
UZS 11987.497487
VES 227.27225
VND 26315
VUV 122.169446
WST 2.82328
XAF 570.814334
XAG 0.020533
XAU 0.000249
XCD 2.70255
XCG 1.801656
XDR 0.70875
XOF 570.495888
XPF 104.149691
YER 238.497406
ZAR 17.363401
ZMK 9001.204121
ZMW 22.392878
ZWL 321.999592
  • AEX

    -3.4000

    967.49

    -0.35%

  • BEL20

    10.2900

    4909.56

    +0.21%

  • PX1

    -44.4100

    8030.03

    -0.55%

  • ISEQ

    -36.5700

    12154.53

    -0.3%

  • OSEBX

    0.0000

    1609.64

    0%

  • PSI20

    -43.2700

    8440.9

    -0.51%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    -73.1100

    4034.24

    -1.78%

  • N150

    -10.3100

    3673.24

    -0.28%

100 ans après, la physique quantique reste un mystère
100 ans après, la physique quantique reste un mystère / Photo: © AFP/Archives

100 ans après, la physique quantique reste un mystère

Ses applications ont révolutionné nos vies mais ce qu'elle décrit reste mystérieux: l'interprétation de la théorie quantique divise toujours les physiciens cent ans après sa formulation, selon un sondage publié mercredi par la revue Nature.

Taille du texte:

"Shut up and calculate!" (+Tais-toi et calcule!+): la formule, célèbre dans le milieu de la physique quantique, domaine récompensé par de nombreux prix Nobel, illustre le paradoxe auquel sont confrontés ces chercheurs.

Les équations qu'ils utilisent décrivent remarquablement bien le comportements d'objets dans l'infiniment petit. Sans qu'on comprenne pour autant les phénomènes physiques qui se cachent derrière les mathématiques.

Tout a commencé au tournant du 20e siècle, lorsque les scientifiques ont fait le constat que les principes classiques de la physique ne s'appliquaient pas au niveau atomique.

Photons ou électrons s'y comportent à la fois comme des particules et des ondes et peuvent avoir simultanément plusieurs positions, vitesses ou niveaux d'énergie.

En 1925, l'Autrichien Erwin Schrödinger et l'Allemand Werner Heisenberg ont élaboré en parallèle un ensemble d'outils mathématiques complexes qui décrit un système quantique et son évolution grâce aux probabilités. Cette "fonction d'onde" permet de prédire les résultats de mesures effectuées sur une particule.

Lasers, lampes à LED, transistors de nos téléphones portables... notre quotidien fourmille d'inventions qui reposent sur ces calculs.

Mais que se passe-t-il vraiment dans le monde de l'infiniment petit ?

Alors que les physiciens les plus éminents se réunissaient sur l'île d'Heligoland (Allemagne), où Heisenberg a écrit ses équations fondatrices il y a cent ans, Nature a posé la question à 1.100 spécialistes des particules.

Et constaté à l'issue de cette vaste enquête "un manque frappant de consensus" sur ce que la théorie quantique "dit réellement de la réalité".

- Univers multiples -

Un gros tiers (36%) des physiciens interrogés privilégient l'"interprétation de Copenhague", la vision largement enseignée.

Dans le monde classique, tout objet a des propriétés (vitesse, position...) avec des valeurs bien définies qu'on observe ou non. Ce n'est pas le cas dans le monde quantique, selon cette conception développée dans les années 1920 par Heisenberg et le Danois Niels Bohr.

Ce n'est que lorsqu'un observateur interagit avec cet objet pour le mesurer, que celui-ci "choisit" un état déterminé parmi tous les états possibles décrits par la fonction d'onde. On dit que celle-ci "s'effondre".

C'est l'interprétation "la plus simple que nous ayons", résume Décio Krause de l'Université fédérale de Rio de Janeiro dans l'enquête menée par Nature. Malgré ses problèmes - elle n'explique pas pourquoi la mesure a un tel effet entre autres -, les alternatives "présentent d'autres problèmes qui, pour moi, sont pires".

D'autres approches sont cependant soutenues par un nombre significatif de chercheurs. Par exemple celle des mondes multiples (15%), selon laquelle la fonction d'onde ne s'effondre pas mais se ramifie en autant d'univers que de résultats possibles.

Lorsqu'un observateur effectue une mesure, il obtient un résultat dans un monde donné. Ce qui suppose l'existence d'univers parallèles ne pouvant communiquer entre eux.

"Cela nécessite un réajustement radical de nos intuitions sur le monde, mais pour moi, c'est exactement ce à quoi nous devrions nous attendre de la part d'une théorie fondamentale de la réalité", déclare dans l'enquête Sean Carroll de l'Université américaine Johns Hopkins.

Existe-t-il une frontière entre les mondes quantique et macroscopique, où les lois de la physique changeraient brusquement ? La communauté scientifique est là aussi divisée, 45% des physiciens interrogés répondant "oui" et autant "non".

Au final, seuls 24% se disent confiants que leur interprétation préférée est correcte. Et 75% pensent qu'elle sera un jour remplacée par une théorie plus complète.

En attendant, les milliers de chercheurs à travers le monde travaillant sur les ordinateurs ou la cryptographie quantiques continueront d'appliquer la devise: "tais-toi et calcule!".

G.Tsang--ThChM