The China Mail - Réacteur lunaire, l'Alarme

USD -
AED 3.672498
AFN 66.489639
ALL 83.872087
AMD 382.479961
ANG 1.789982
AOA 916.999985
ARS 1450.743702
AUD 1.54464
AWG 1.8025
AZN 1.699936
BAM 1.69722
BBD 2.01352
BDT 122.007836
BGN 1.695365
BHD 0.376995
BIF 2949.338748
BMD 1
BND 1.304378
BOB 6.907594
BRL 5.359498
BSD 0.999679
BTN 88.558647
BWP 13.450775
BYN 3.407125
BYR 19600
BZD 2.010578
CAD 1.412195
CDF 2220.999879
CHF 0.806765
CLF 0.02406
CLP 943.870277
CNY 7.12675
CNH 7.121955
COP 3810.2
CRC 502.442792
CUC 1
CUP 26.5
CVE 95.686244
CZK 21.085038
DJF 177.719807
DKK 6.46671
DOP 64.320178
DZD 130.472159
EGP 47.297403
ERN 15
ETB 153.49263
EUR 0.86615
FJD 2.28525
FKP 0.766404
GBP 0.761505
GEL 2.71497
GGP 0.766404
GHS 10.92632
GIP 0.766404
GMD 73.509134
GNF 8677.881382
GTQ 7.6608
GYD 209.15339
HKD 7.77536
HNL 26.286056
HRK 6.525605
HTG 130.827172
HUF 334.42202
IDR 16704
ILS 3.272635
IMP 0.766404
INR 88.66155
IQD 1309.660176
IRR 42112.501708
ISK 126.640364
JEP 0.766404
JMD 160.35857
JOD 0.709002
JPY 152.931497
KES 129.149764
KGS 87.450218
KHR 4012.669762
KMF 427.999978
KPW 900.033283
KRW 1447.940003
KWD 0.30693
KYD 0.833167
KZT 526.13127
LAK 21717.265947
LBP 89523.367365
LKR 304.861328
LRD 182.946302
LSL 17.373217
LTL 2.95274
LVL 0.60489
LYD 5.466197
MAD 9.311066
MDL 17.114592
MGA 4508.159378
MKD 53.394772
MMK 2099.044592
MNT 3585.031206
MOP 8.005051
MRU 39.997917
MUR 45.999865
MVR 15.404993
MWK 1733.486063
MXN 18.621425
MYR 4.183006
MZN 63.960023
NAD 17.373217
NGN 1438.210482
NIO 36.78522
NOK 10.215903
NPR 141.693568
NZD 1.77559
OMR 0.384504
PAB 0.999779
PEN 3.375927
PGK 4.279045
PHP 58.9145
PKR 282.679805
PLN 3.68211
PYG 7081.988268
QAR 3.643566
RON 4.406497
RSD 101.52698
RUB 81.499636
RWF 1452.596867
SAR 3.750504
SBD 8.223823
SCR 14.35585
SDG 600.503157
SEK 9.57037
SGD 1.304195
SHP 0.750259
SLE 23.197576
SLL 20969.499529
SOS 571.349231
SRD 38.503505
STD 20697.981008
STN 21.260533
SVC 8.747304
SYP 11056.895466
SZL 17.359159
THB 32.393501
TJS 9.227278
TMT 3.5
TND 2.959939
TOP 2.342104
TRY 42.112499
TTD 6.773954
TWD 30.962802
TZS 2459.807029
UAH 42.066455
UGX 3491.096532
UYU 39.813947
UZS 11966.746503
VES 227.27225
VND 26315
VUV 122.169446
WST 2.82328
XAF 569.234174
XAG 0.020817
XAU 0.000251
XCD 2.70255
XCG 1.801686
XDR 0.70875
XOF 569.231704
XPF 103.489719
YER 238.495377
ZAR 17.383798
ZMK 9001.199567
ZMW 22.61803
ZWL 321.999592
  • AEX

    -9.8100

    961.06

    -1.01%

  • BEL20

    27.9200

    4926.5

    +0.57%

  • PX1

    -109.8100

    7964.77

    -1.36%

  • ISEQ

    -64.6100

    12126.73

    -0.53%

  • OSEBX

    -6.1200

    1603.62

    -0.38%

  • PSI20

    -106.8900

    8376.71

    -1.26%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    66.1600

    4100.44

    +1.64%

  • N150

    -45.6800

    3637.99

    -1.24%


Réacteur lunaire, l'Alarme




La NASA veut franchir un cap décisif pour l’exploration habitée : installer un réacteur nucléaire sur la Lune afin d’alimenter en continu une base et ses systèmes vitaux, là où les nuits durent quatorze jours terrestres et où l’ombre permanente rend l’énergie solaire aléatoire. Derrière cette promesse d’autonomie énergétique se cache un projet industriel d’une ampleur inédite dans l’espace — et un débat public sensible sur la sûreté, l’environnement et la gouvernance.

Concrètement, l’agence américaine prépare un système de fission de surface capable de fonctionner sans interruption pendant près d’une décennie. Après une première phase de concept menée dès 2022, elle a récemment renforcé son ambition : viser au moins 100 kW électriques, avec une conversion par cycle Brayton fermé (un compresseur et une turbine qui transforment la chaleur du cœur en électricité) et une contrainte de masse stricte pour l’acheminement lunaire. Le calendrier avancé : une démonstration au début-milieu des années 2030, suivie d’une exploitation multiannuelle si les essais sont concluants.

Pourquoi un réacteur ? Parce que la Lune impose des contraintes énergétiques radicales. Un module nucléaire compacte fournirait une puissance stable pour les systèmes de vie, les communications, la recherche et des usages très gourmands comme l’extraction d’eau dans les régions polaires (glaces d’ombre éternelle) et la production d’oxygène et de carburants in situ. En réduisant la dépendance aux panneaux solaires et aux batteries massives, il sécurise les missions pendant les longues nuits et dans les cratères sans soleil.

Sur le plan industriel, la première sélection américaine a associé des géants de l’aérospatial et du nucléaire à des spécialistes des turbomachines : Lockheed Martin avec BWX Technologies et Creare, Westinghouse avec Aerojet Rocketdyne, ainsi qu’IX (co-entreprise d’Intuitive Machines et X-energy) avec Maxar et Boeing. Parallèlement, des contrats ciblés soutiennent les convertisseurs Brayton (turbomachines et alternateurs) — technologies clés pour gagner en rendement et compacité. Cette stratégie modulaire vise à faire converger troisième décennie d’essais nucléaires spatiaux américains et expertise des filières civiles.

Côté cœur, la filière privilégiée s’appuie sur de l’uranium faiblement enrichi à haut titre (HALEU, < 20 % U-235). Ce compromis, déjà exploré pour des micro-réacteurs terrestres, permet des réacteurs plus petits et plus endurants tout en limitant les risques de prolifération associés à l’uranium hautement enrichi. Les documents techniques récents évoquent des architectures de 40 kWe sur dix ans comme jalon, et l’effort en 2025 pousse vers l’échelle 100 kWe pour répondre aux besoins d’une base habitée.

Reste la question qui inquiète : la sûreté. L’espace a déjà connu des controverses autour de sources nucléaires — des RTG (générateurs thermoélectriques au plutonium) aux débats lors du lancement de Cassini dans les années 1990. La Lune n’abrite pas de biosphère à protéger, mais le risque maximal se situe au lancement et pendant l’injection orbitale, sur ou au-dessus de la Terre. C’est pourquoi le programme devra démontrer une résistance aux accidents de lancement, une confinement robuste du combustible en cas de défaillance, des procédures de retour sécurisé, et un plan de fin de vie (mise en sécurité ou stockage sur place). À l’échelle internationale, un cadre de sûreté et de transparence existe : les principes onusiens et le Safety Framework (ONU/IAEA) imposent des évaluations de sûreté pré-lancement rendues publiques et des pratiques d’ingénierie prudentes. Le projet américain devra s’y conformer et convaincre les partenaires de l’ère Artemis.

La gouvernance soulève aussi des questions : où implanter un réacteur pour minimiser les risques radiologiques pour les équipages ? Quelles zones d’exclusion établir autour du site ? Comment partager l’énergie avec des partenaires internationaux tout en respectant les Accords Artemis et le droit spatial existant ? La transparence des données de sûreté et l’implication d’instances indépendantes seront déterminantes pour l’acceptabilité sociale.

Sur la scène géopolitique, la course technologique s’accélère. Des ingénieurs chinois revendiquent des concepts alternatifs au design occidental, ciblant des gains d’efficacité et des réacteurs plus légers pour des déploiements multiples. Qu’il s’agisse d’émulation ou de compétition, l’effet est clair : la poussée vers le nucléaire lunaire devient un axe majeur de leadership spatial et d’autonomie énergétique hors-Terre.

Enfin, il y a l’équation économique. Entre la qualification nucléaire (tests, redondances, blindages), le transport vers la surface et l’intégration aux habitats, l’addition sera élevée. Les défenseurs du projet rétorquent que l’énergie fiable est la condition sine qua non d’une présence durable — et que les coûts seront mutualisés par des décennies d’usages (habitats, mobilité, ISRU, robotique), voire par des retombées terrestres (micro-réacteurs, turbomachines Brayton, matériaux résistants).

En bref : le réacteur lunaire n’est plus une idée, c’est un programme. Il promet de rendre une base lunaire viable 24/7, mais il devra gagner sur deux terrains simultanément : la preuve technique (rendement, masse, longévité) et la preuve sociale (sûreté transparente, conformité internationale). La décennie qui s’ouvre dira si l’humanité allume, pour de bon, sa première centrale sur un autre monde.