The China Mail - Réacteur lunaire, l'Alarme

USD -
AED 3.672498
AFN 65.999546
ALL 83.886299
AMD 382.569343
ANG 1.789982
AOA 916.999667
ARS 1450.724895
AUD 1.535992
AWG 1.8025
AZN 1.703625
BAM 1.701894
BBD 2.013462
BDT 121.860805
BGN 1.698675
BHD 0.376969
BIF 2951
BMD 1
BND 1.306514
BOB 6.907654
BRL 5.340706
BSD 0.999682
BTN 88.718716
BWP 13.495075
BYN 3.407518
BYR 19600
BZD 2.010599
CAD 1.40972
CDF 2221.000107
CHF 0.8083
CLF 0.024025
CLP 942.260127
CNY 7.12675
CNH 7.124335
COP 3834.5
CRC 501.842642
CUC 1
CUP 26.5
CVE 96.374981
CZK 21.130974
DJF 177.719889
DKK 6.481435
DOP 64.297733
DZD 130.702957
EGP 47.350598
ERN 15
ETB 153.125026
EUR 0.868055
FJD 2.281097
FKP 0.766404
GBP 0.765345
GEL 2.714973
GGP 0.766404
GHS 10.924959
GIP 0.766404
GMD 73.496433
GNF 8691.000207
GTQ 7.661048
GYD 209.152772
HKD 7.774794
HNL 26.359887
HRK 6.537806
HTG 130.911876
HUF 335.451502
IDR 16695.1
ILS 3.253855
IMP 0.766404
INR 88.641051
IQD 1310
IRR 42112.439107
ISK 127.05977
JEP 0.766404
JMD 160.956848
JOD 0.709027
JPY 153.633017
KES 129.201234
KGS 87.449557
KHR 4027.000211
KMF 427.999878
KPW 900.033283
KRW 1447.48028
KWD 0.30713
KYD 0.83313
KZT 525.140102
LAK 21712.500514
LBP 89549.999727
LKR 304.599802
LRD 182.625016
LSL 17.379986
LTL 2.95274
LVL 0.60489
LYD 5.455014
MAD 9.301979
MDL 17.135125
MGA 4500.000656
MKD 53.533982
MMK 2099.044592
MNT 3585.031206
MOP 8.006805
MRU 38.249781
MUR 45.999702
MVR 15.404977
MWK 1736.000423
MXN 18.58737
MYR 4.18301
MZN 63.960022
NAD 17.380215
NGN 1440.729964
NIO 36.770288
NOK 10.170899
NPR 141.949154
NZD 1.7668
OMR 0.384495
PAB 0.999687
PEN 3.376505
PGK 4.216027
PHP 58.845981
PKR 280.85006
PLN 3.69242
PYG 7077.158694
QAR 3.640957
RON 4.414195
RSD 101.74198
RUB 81.125016
RWF 1450
SAR 3.750543
SBD 8.223823
SCR 13.740948
SDG 600.503506
SEK 9.536655
SGD 1.304925
SHP 0.750259
SLE 23.200677
SLL 20969.499529
SOS 571.507056
SRD 38.558019
STD 20697.981008
STN 21.45
SVC 8.747031
SYP 11056.895466
SZL 17.38022
THB 32.350333
TJS 9.257197
TMT 3.5
TND 2.960056
TOP 2.342104
TRY 42.11875
TTD 6.775354
TWD 30.898017
TZS 2459.806973
UAH 42.064759
UGX 3491.230589
UYU 39.758439
UZS 11987.497487
VES 227.27225
VND 26315
VUV 122.169446
WST 2.82328
XAF 570.814334
XAG 0.020533
XAU 0.000249
XCD 2.70255
XCG 1.801656
XDR 0.70875
XOF 570.495888
XPF 104.149691
YER 238.497406
ZAR 17.363401
ZMK 9001.204121
ZMW 22.392878
ZWL 321.999592
  • AEX

    -6.0200

    964.9

    -0.62%

  • BEL20

    11.7600

    4911.13

    +0.24%

  • PX1

    -67.8200

    8006.16

    -0.84%

  • ISEQ

    -60.9600

    12130.26

    -0.5%

  • OSEBX

    -8.2100

    1601.46

    -0.51%

  • PSI20

    -87.3900

    8396.82

    -1.03%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    -73.1100

    4034.24

    -1.78%

  • N150

    -25.0500

    3658.48

    -0.68%


Réacteur lunaire, l'Alarme




La NASA veut franchir un cap décisif pour l’exploration habitée : installer un réacteur nucléaire sur la Lune afin d’alimenter en continu une base et ses systèmes vitaux, là où les nuits durent quatorze jours terrestres et où l’ombre permanente rend l’énergie solaire aléatoire. Derrière cette promesse d’autonomie énergétique se cache un projet industriel d’une ampleur inédite dans l’espace — et un débat public sensible sur la sûreté, l’environnement et la gouvernance.

Concrètement, l’agence américaine prépare un système de fission de surface capable de fonctionner sans interruption pendant près d’une décennie. Après une première phase de concept menée dès 2022, elle a récemment renforcé son ambition : viser au moins 100 kW électriques, avec une conversion par cycle Brayton fermé (un compresseur et une turbine qui transforment la chaleur du cœur en électricité) et une contrainte de masse stricte pour l’acheminement lunaire. Le calendrier avancé : une démonstration au début-milieu des années 2030, suivie d’une exploitation multiannuelle si les essais sont concluants.

Pourquoi un réacteur ? Parce que la Lune impose des contraintes énergétiques radicales. Un module nucléaire compacte fournirait une puissance stable pour les systèmes de vie, les communications, la recherche et des usages très gourmands comme l’extraction d’eau dans les régions polaires (glaces d’ombre éternelle) et la production d’oxygène et de carburants in situ. En réduisant la dépendance aux panneaux solaires et aux batteries massives, il sécurise les missions pendant les longues nuits et dans les cratères sans soleil.

Sur le plan industriel, la première sélection américaine a associé des géants de l’aérospatial et du nucléaire à des spécialistes des turbomachines : Lockheed Martin avec BWX Technologies et Creare, Westinghouse avec Aerojet Rocketdyne, ainsi qu’IX (co-entreprise d’Intuitive Machines et X-energy) avec Maxar et Boeing. Parallèlement, des contrats ciblés soutiennent les convertisseurs Brayton (turbomachines et alternateurs) — technologies clés pour gagner en rendement et compacité. Cette stratégie modulaire vise à faire converger troisième décennie d’essais nucléaires spatiaux américains et expertise des filières civiles.

Côté cœur, la filière privilégiée s’appuie sur de l’uranium faiblement enrichi à haut titre (HALEU, < 20 % U-235). Ce compromis, déjà exploré pour des micro-réacteurs terrestres, permet des réacteurs plus petits et plus endurants tout en limitant les risques de prolifération associés à l’uranium hautement enrichi. Les documents techniques récents évoquent des architectures de 40 kWe sur dix ans comme jalon, et l’effort en 2025 pousse vers l’échelle 100 kWe pour répondre aux besoins d’une base habitée.

Reste la question qui inquiète : la sûreté. L’espace a déjà connu des controverses autour de sources nucléaires — des RTG (générateurs thermoélectriques au plutonium) aux débats lors du lancement de Cassini dans les années 1990. La Lune n’abrite pas de biosphère à protéger, mais le risque maximal se situe au lancement et pendant l’injection orbitale, sur ou au-dessus de la Terre. C’est pourquoi le programme devra démontrer une résistance aux accidents de lancement, une confinement robuste du combustible en cas de défaillance, des procédures de retour sécurisé, et un plan de fin de vie (mise en sécurité ou stockage sur place). À l’échelle internationale, un cadre de sûreté et de transparence existe : les principes onusiens et le Safety Framework (ONU/IAEA) imposent des évaluations de sûreté pré-lancement rendues publiques et des pratiques d’ingénierie prudentes. Le projet américain devra s’y conformer et convaincre les partenaires de l’ère Artemis.

La gouvernance soulève aussi des questions : où implanter un réacteur pour minimiser les risques radiologiques pour les équipages ? Quelles zones d’exclusion établir autour du site ? Comment partager l’énergie avec des partenaires internationaux tout en respectant les Accords Artemis et le droit spatial existant ? La transparence des données de sûreté et l’implication d’instances indépendantes seront déterminantes pour l’acceptabilité sociale.

Sur la scène géopolitique, la course technologique s’accélère. Des ingénieurs chinois revendiquent des concepts alternatifs au design occidental, ciblant des gains d’efficacité et des réacteurs plus légers pour des déploiements multiples. Qu’il s’agisse d’émulation ou de compétition, l’effet est clair : la poussée vers le nucléaire lunaire devient un axe majeur de leadership spatial et d’autonomie énergétique hors-Terre.

Enfin, il y a l’équation économique. Entre la qualification nucléaire (tests, redondances, blindages), le transport vers la surface et l’intégration aux habitats, l’addition sera élevée. Les défenseurs du projet rétorquent que l’énergie fiable est la condition sine qua non d’une présence durable — et que les coûts seront mutualisés par des décennies d’usages (habitats, mobilité, ISRU, robotique), voire par des retombées terrestres (micro-réacteurs, turbomachines Brayton, matériaux résistants).

En bref : le réacteur lunaire n’est plus une idée, c’est un programme. Il promet de rendre une base lunaire viable 24/7, mais il devra gagner sur deux terrains simultanément : la preuve technique (rendement, masse, longévité) et la preuve sociale (sûreté transparente, conformité internationale). La décennie qui s’ouvre dira si l’humanité allume, pour de bon, sa première centrale sur un autre monde.