The China Mail - Diamanti: Chimica e Durezza

USD -
AED 3.672498
AFN 66.000229
ALL 83.900451
AMD 382.570291
ANG 1.789982
AOA 917.000333
ARS 1450.749912
AUD 1.535886
AWG 1.8025
AZN 1.699023
BAM 1.701894
BBD 2.013462
BDT 121.860805
BGN 1.699695
BHD 0.376993
BIF 2951
BMD 1
BND 1.306514
BOB 6.907654
BRL 5.361199
BSD 0.999682
BTN 88.718716
BWP 13.495075
BYN 3.407518
BYR 19600
BZD 2.010599
CAD 1.410025
CDF 2221.000229
CHF 0.80905
CLF 0.024076
CLP 944.499783
CNY 7.12675
CNH 7.127075
COP 3834.5
CRC 501.842642
CUC 1
CUP 26.5
CVE 96.375062
CZK 21.167017
DJF 177.720385
DKK 6.48429
DOP 64.297478
DZD 130.73859
EGP 47.410897
ERN 15
ETB 153.125038
EUR 0.86864
FJD 2.280599
FKP 0.766694
GBP 0.765295
GEL 2.714999
GGP 0.766694
GHS 10.924996
GIP 0.766694
GMD 73.500254
GNF 8690.999499
GTQ 7.661048
GYD 209.152772
HKD 7.774095
HNL 26.359678
HRK 6.547599
HTG 130.911876
HUF 335.9575
IDR 16709.4
ILS 3.261085
IMP 0.766694
INR 88.5796
IQD 1310
IRR 42112.494963
ISK 127.690319
JEP 0.766694
JMD 160.956848
JOD 0.709021
JPY 153.851993
KES 129.249938
KGS 87.450058
KHR 4026.999755
KMF 428.000397
KPW 899.974506
KRW 1447.345034
KWD 0.307151
KYD 0.83313
KZT 525.140102
LAK 21712.501945
LBP 89550.000328
LKR 304.599802
LRD 182.625047
LSL 17.379511
LTL 2.95274
LVL 0.60489
LYD 5.455036
MAD 9.301994
MDL 17.135125
MGA 4500.000477
MKD 53.533982
MMK 2099.235133
MNT 3586.705847
MOP 8.006805
MRU 38.249656
MUR 45.999806
MVR 15.40497
MWK 1736.000135
MXN 18.590735
MYR 4.182985
MZN 63.960089
NAD 17.380183
NGN 1442.505713
NIO 36.770126
NOK 10.20405
NPR 141.949154
NZD 1.766192
OMR 0.384503
PAB 0.999687
PEN 3.376503
PGK 4.216022
PHP 58.971497
PKR 280.850034
PLN 3.697112
PYG 7077.158694
QAR 3.641027
RON 4.416302
RSD 101.82802
RUB 81.356695
RWF 1450
SAR 3.75044
SBD 8.223823
SCR 13.741692
SDG 600.496025
SEK 9.55345
SGD 1.30536
SHP 0.750259
SLE 23.202463
SLL 20969.499529
SOS 571.509811
SRD 38.558003
STD 20697.981008
STN 21.45
SVC 8.747031
SYP 11058.728905
SZL 17.379793
THB 32.4545
TJS 9.257197
TMT 3.5
TND 2.960222
TOP 2.342104
TRY 42.10654
TTD 6.775354
TWD 30.925504
TZS 2459.806991
UAH 42.064759
UGX 3491.230589
UYU 39.758439
UZS 11987.501438
VES 227.27225
VND 26322.5
VUV 121.938877
WST 2.805824
XAF 570.814334
XAG 0.020681
XAU 0.000251
XCD 2.70255
XCG 1.801656
XDR 0.70875
XOF 570.497705
XPF 104.149552
YER 238.497171
ZAR 17.39149
ZMK 9001.177898
ZMW 22.392878
ZWL 321.999592

Diamanti: Chimica e Durezza




I diamanti non sono solo simboli di lusso e bellezza, ma anche meraviglie della scienza, noti per essere il materiale più duro conosciuto. Questo articolo esplora in dettaglio la loro chimica, le proprietà fisiche che li distinguono e le applicazioni che ne derivano, offrendo un’immersione tecnica nel mondo di questa straordinaria sostanza.

La struttura chimica dei diamanti
I diamanti sono formati esclusivamente da atomi di carbonio, lo stesso elemento presente nella grafite. Ciò che li rende unici è la loro struttura cristallina: ogni atomo di carbonio è legato a quattro altri atomi tramite legami covalenti, disposti in una configurazione tetraedrica. Questa rete tridimensionale, chiamata reticolo cristallino cubico, è responsabile della loro eccezionale durezza. I legami covalenti, tra i più forti in natura, si estendono uniformemente in tutte le direzioni, creando una struttura incredibilmente resistente e stabile.

Formazione naturale e sintetica
I diamanti naturali nascono nelle profondità del mantello terrestre, tra 150 e 300 chilometri sotto la superficie, dove temperature di 1.300-1.400°C e pressioni di circa 70 tonnellate per centimetro quadrato trasformano il carbonio in questa forma cristallina. Eruzioni vulcaniche trasportano poi i diamanti verso la superficie, incastonati in rocce chiamate kimberliti.

In laboratorio, i diamanti sintetici vengono prodotti con due tecniche principali. La deposizione chimica da vapore (CVD) utilizza gas ricchi di carbonio per far crescere diamanti strato dopo strato a partire da un seme, in una camera a vuoto. La sintesi ad alta pressione e alta temperatura (HPHT) replica invece le condizioni del mantello terrestre, trasformando il carbonio in diamante. Questi diamanti artificiali condividono le stesse proprietà chimiche e fisiche di quelli naturali, ma sono più accessibili e sostenibili.

Proprietà fisiche e durezza
Sulla scala di Mohs, i diamanti raggiungono il grado 10, il massimo livello di durezza. Questa caratteristica deriva dalla forza dei legami covalenti e dalla loro disposizione simmetrica. Oltre alla durezza, i diamanti vantano un’altissima conducibilità termica, che li rende ottimi dissipatori di calore, e un elevato indice di rifrazione, alla base della loro brillantezza. Sono inoltre resistenti agli agenti chimici e mostrano una dilatazione termica minima, simile a quella di materiali come l’invar.

Applicazioni scientifiche e industriali
Le proprietà dei diamanti li rendono indispensabili in molti settori. Nell’industria, sono impiegati in utensili da taglio, levigatura e perforazione, ideali per lavorare materiali duri come metalli e rocce grazie alla loro resistenza all’usura. In ambito scientifico, trovano applicazione in strumenti ottici e presse ad altissima pressione, utili per studiare le condizioni interne dei pianeti.

Un utilizzo innovativo riguarda i semiconduttori: alcuni diamanti, naturalmente conduttivi o drogati con impurità, possono trasportare elettricità, aprendo prospettive nell’elettronica ad alta potenza e nei dispositivi quantistici, come i computer del futuro.

Sfide e sviluppi futuri
Nonostante i loro punti di forza, i diamanti hanno limiti. A temperature elevate, reagiscono con il ferro, rendendoli inadatti a lavorare materiali ferrosi, e sopra gli 800°C si ossidano. Per superare queste criticità, si studiano alternative come il nitruro di boro cubico, più stabile termicamente. Inoltre, nuovi materiali teorici, come il pentadiamante o gli aggregati di nanotubi di carbonio, promettono di superare la durezza del diamante, con possibili impieghi in ambiti estremi.

Conclusione
I diamanti sono un connubio di natura e tecnologia, con una chimica unica che ne fa un materiale insostituibile. Le innovazioni nella loro sintesi e applicazione continuano a espanderne il potenziale, confermando il loro ruolo centrale nella scienza e nell’industria moderna.