The China Mail - Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química

USD -
AED 3.67305
AFN 66.496721
ALL 83.872087
AMD 382.480316
ANG 1.789982
AOA 917.000151
ARS 1450.743722
AUD 1.543543
AWG 1.805
AZN 1.721313
BAM 1.69722
BBD 2.01352
BDT 122.007836
BGN 1.69435
BHD 0.376961
BIF 2952.5
BMD 1
BND 1.304378
BOB 6.907594
BRL 5.350197
BSD 0.999679
BTN 88.558647
BWP 13.450775
BYN 3.407125
BYR 19600
BZD 2.010578
CAD 1.41132
CDF 2154.999794
CHF 0.806245
CLF 0.024029
CLP 942.659758
CNY 7.11935
CNH 7.122085
COP 3784.25
CRC 502.442792
CUC 1
CUP 26.5
CVE 95.849785
CZK 21.08085
DJF 177.720149
DKK 6.46669
DOP 64.301661
DZD 130.471267
EGP 47.303968
ERN 15
ETB 153.49263
EUR 0.86605
FJD 2.28525
FKP 0.766404
GBP 0.76133
GEL 2.715005
GGP 0.766404
GHS 10.92632
GIP 0.766404
GMD 73.510149
GNF 8677.881382
GTQ 7.6608
GYD 209.15339
HKD 7.774805
HNL 26.286056
HRK 6.524997
HTG 130.827172
HUF 334.350298
IDR 16686.5
ILS 3.261445
IMP 0.766404
INR 88.675601
IQD 1309.660176
IRR 42112.499919
ISK 126.620161
JEP 0.766404
JMD 160.35857
JOD 0.709006
JPY 153.072498
KES 129.14997
KGS 87.450262
KHR 4012.669762
KMF 420.999708
KPW 900.033283
KRW 1448.119782
KWD 0.306898
KYD 0.833167
KZT 526.13127
LAK 21717.265947
LBP 89523.367365
LKR 304.861328
LRD 182.946302
LSL 17.373217
LTL 2.95274
LVL 0.60489
LYD 5.466197
MAD 9.311066
MDL 17.114592
MGA 4508.159378
MKD 53.394772
MMK 2099.044592
MNT 3585.031206
MOP 8.005051
MRU 39.997917
MUR 45.999381
MVR 15.405019
MWK 1733.486063
MXN 18.57444
MYR 4.18297
MZN 63.960351
NAD 17.373217
NGN 1438.169534
NIO 36.78522
NOK 10.201703
NPR 141.693568
NZD 1.774497
OMR 0.384501
PAB 0.999779
PEN 3.375927
PGK 4.279045
PHP 58.997504
PKR 282.679805
PLN 3.68034
PYG 7081.988268
QAR 3.643566
RON 4.403984
RSD 101.501994
RUB 81.251088
RWF 1452.596867
SAR 3.750504
SBD 8.223823
SCR 15.060272
SDG 600.496692
SEK 9.5646
SGD 1.304202
SHP 0.750259
SLE 23.197134
SLL 20969.499529
SOS 571.349231
SRD 38.503497
STD 20697.981008
STN 21.260533
SVC 8.747304
SYP 11056.895466
SZL 17.359159
THB 32.399408
TJS 9.227278
TMT 3.5
TND 2.959939
TOP 2.342104
TRY 42.099355
TTD 6.773954
TWD 30.984983
TZS 2459.806975
UAH 42.066455
UGX 3491.096532
UYU 39.813947
UZS 11966.746503
VES 227.27225
VND 26315
VUV 122.169446
WST 2.82328
XAF 569.234174
XAG 0.020825
XAU 0.000251
XCD 2.70255
XCG 1.801686
XDR 0.70875
XOF 569.231704
XPF 103.489719
YER 238.483762
ZAR 17.37062
ZMK 9001.20436
ZMW 22.61803
ZWL 321.999592
Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química
Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química / foto: © AFP

Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química

Prever a estrutura das proteínas e criar novas para o tratamento de doenças ou para degradar plásticos é um campo promissor explorado pelos americanos David Baker e John Jumper, e pelo britânico Demis Hassabis, contemplados, nesta quarta-feira (9) com o Prêmio Nobel de Química.

Tamanho do texto:

- O que é uma proteína? -

As proteínas são moléculas que desempenham um papel fundamental em quase todas as funções dos organismos vivos.

São compostas de uma sequência de aminoácidos, blocos básicos de 20 tipos diferentes que podem ser combinados infinitamente. Seguindo as instruções armazenadas no DNA, os aminoácidos de uma proteína se entrelaçam para formar uma longa cadeia que se retorce, adotando uma estrutura tridimensional específica.

A ordem dos aminoácidos determina qual será a estrutura tridimensional da proteína. E é essa estrutura que dá à proteína a sua função.

"As proteínas são teu sistema imunológico; as enzimas, que também são proteínas, são a digestão", explica à AFP Sophie Sacquin-Mora, especialista do Laboratório francês de Bioquímica Teórica.

"Buscar uma estrutura equivale a querer encontrar uma proteína com uma função específica. A natureza já nos proporciona dezenas de milhares de proteínas diferentes, mas às vezes queremos que faça algo que ainda não sabe fazer", acrescenta.

- O que os premiados com o Nobel descobriram? -

O americano David Baker "decifrou o código" da sequência de aminoácidos, nas palavras do Comitê Nobel. Ele desenhou uma estrutura de proteína completamente nova e, com ajuda do Rosetta, programa de computador criado por ele, conseguiu determinar qual sequência de aminoácidos permitiria obter um determinado resultado.

O Rosetta explorou uma base de dados de todas as estruturas proteicas conhecidas e buscou pequenos fragmentos de proteínas que mostrassem semelhanças com a estrutura desejada. Em seguida, otimizou estes fragmentos e propôs uma sequência de aminoácidos.

O britânico Demis Hassabis e o americano John Jumper fizeram o caminho inverso, prevendo como seria uma proteína a partir da sequência de aminoácidos.

Para isso, usaram inteligência artificial. Com redes neurais artificiais e aprendizagem profunda, com as quais John Hopfield e Geoffrey Hinton foram premiados na terça-feira com o Nobel de Física, eles treinaram seu modelo, AlphaFold2, alimentando-o com todas as sequências de aminoácidos e as estruturas correspondentes conhecidas até hoje.

Diante de uma sequência desconhecida, o AlphaFold2 compara as semelhanças com as sequências já conhecidas e elabora um mapa que estima a distância entre cada aminoácido nas proteínas, e pouco a pouco consegue montar o quebra-cabeças tridimensional. Assim, conseguiram prever a estrutura de quase a totalidade das 200 milhões de proteínas conhecidas.

- Para que serve? -

Visualizar a estrutura de uma proteína permite "compreender melhor porque certas doenças se desenvolvem, como se produz a resistência aos antibióticos ou porque alguns micróbios conseguem decompor o plástico", destaca o Comitê Nobel.

Criar proteínas com novas funções "pode levar a novos nanomateriais, a medicamentos específicos, ao desenvolvimento mais rápido de vacinas, a desenvolver sensores minimalistas e uma indústria química mais ecológica", acrescenta.

Durante o anúncio do Nobel, David Baker mencionou a criação de novos antivirais durante a pandemia de covid-19.

"Se trabalhássemos de forma aleatória, só fazendo combinações, levaria muito tempo" para criar novas proteínas, detalha Sacquin-Mora.

"Neste caso, partimos de uma proteína que conhecemos um pouco, que sabemos que funciona, e fazemos modificações, especialmente na sequência, de forma muito específica, para obter a função que nos interessa exatamente. Fazemos 50 tentativas ao invés de cinco milhões, o que representa uma economia considerável de tempo", diz.

D.Pan--ThChM