The China Mail - Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química

USD -
AED 3.67298
AFN 70.823013
ALL 86.775569
AMD 388.915041
ANG 1.80229
AOA 916.00029
ARS 1165.000022
AUD 1.56485
AWG 1.8025
AZN 1.725034
BAM 1.720875
BBD 2.018575
BDT 121.46782
BGN 1.719448
BHD 0.376902
BIF 2973.52826
BMD 1
BND 1.306209
BOB 6.908081
BRL 5.613981
BSD 0.99974
BTN 84.489457
BWP 13.685938
BYN 3.271726
BYR 19600
BZD 2.008192
CAD 1.38313
CDF 2878.000221
CHF 0.82535
CLF 0.024716
CLP 948.450004
CNY 7.269496
CNH 7.26963
COP 4197
CRC 504.973625
CUC 1
CUP 26.5
CVE 97.016862
CZK 21.912971
DJF 178.02982
DKK 6.56345
DOP 58.838798
DZD 132.52396
EGP 50.785603
ERN 15
ETB 134.165658
EUR 0.879195
FJD 2.261003
FKP 0.7464
GBP 0.748875
GEL 2.744945
GGP 0.7464
GHS 14.246433
GIP 0.7464
GMD 71.500564
GNF 8658.621888
GTQ 7.69911
GYD 209.794148
HKD 7.75648
HNL 25.944257
HRK 6.623697
HTG 130.612101
HUF 355.279662
IDR 16618.75
ILS 3.62579
IMP 0.7464
INR 84.542499
IQD 1309.640606
IRR 42100.000025
ISK 128.279933
JEP 0.7464
JMD 158.264519
JOD 0.709299
JPY 143.034015
KES 129.430095
KGS 87.44998
KHR 4001.777395
KMF 432.250385
KPW 899.962286
KRW 1422.97993
KWD 0.30643
KYD 0.833176
KZT 513.046807
LAK 21614.701341
LBP 89576.724931
LKR 299.271004
LRD 199.948086
LSL 18.615568
LTL 2.95274
LVL 0.60489
LYD 5.457033
MAD 9.266636
MDL 17.160656
MGA 4439.086842
MKD 54.126919
MMK 2099.391763
MNT 3573.279231
MOP 7.987805
MRU 39.562664
MUR 45.160016
MVR 15.39428
MWK 1733.575599
MXN 19.522097
MYR 4.314974
MZN 64.009766
NAD 18.615896
NGN 1602.520288
NIO 36.788547
NOK 10.383565
NPR 135.187646
NZD 1.689835
OMR 0.385001
PAB 0.99974
PEN 3.665568
PGK 4.08192
PHP 55.868503
PKR 280.902072
PLN 3.759073
PYG 8007.144837
QAR 3.643899
RON 4.376897
RSD 103.124079
RUB 81.242148
RWF 1436.169979
SAR 3.750752
SBD 8.361298
SCR 14.215028
SDG 600.497601
SEK 9.64629
SGD 1.30636
SHP 0.785843
SLE 22.750038
SLL 20969.483762
SOS 571.317956
SRD 36.850118
STD 20697.981008
SVC 8.747487
SYP 13001.4097
SZL 18.59929
THB 33.419936
TJS 10.537222
TMT 3.51
TND 2.969282
TOP 2.342098
TRY 38.474995
TTD 6.771697
TWD 32.034304
TZS 2695.000166
UAH 41.472624
UGX 3662.201104
UYU 42.065716
UZS 12930.219053
VES 86.54811
VND 26005
VUV 120.409409
WST 2.768399
XAF 577.175439
XAG 0.031024
XAU 0.000305
XCD 2.70255
XDR 0.71673
XOF 577.165282
XPF 104.934823
YER 245.049905
ZAR 18.56175
ZMK 9001.20839
ZMW 27.817984
ZWL 321.999592
Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química
Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química / foto: © AFP

Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química

Prever a estrutura das proteínas e criar novas para o tratamento de doenças ou para degradar plásticos é um campo promissor explorado pelos americanos David Baker e John Jumper, e pelo britânico Demis Hassabis, contemplados, nesta quarta-feira (9) com o Prêmio Nobel de Química.

Tamanho do texto:

- O que é uma proteína? -

As proteínas são moléculas que desempenham um papel fundamental em quase todas as funções dos organismos vivos.

São compostas de uma sequência de aminoácidos, blocos básicos de 20 tipos diferentes que podem ser combinados infinitamente. Seguindo as instruções armazenadas no DNA, os aminoácidos de uma proteína se entrelaçam para formar uma longa cadeia que se retorce, adotando uma estrutura tridimensional específica.

A ordem dos aminoácidos determina qual será a estrutura tridimensional da proteína. E é essa estrutura que dá à proteína a sua função.

"As proteínas são teu sistema imunológico; as enzimas, que também são proteínas, são a digestão", explica à AFP Sophie Sacquin-Mora, especialista do Laboratório francês de Bioquímica Teórica.

"Buscar uma estrutura equivale a querer encontrar uma proteína com uma função específica. A natureza já nos proporciona dezenas de milhares de proteínas diferentes, mas às vezes queremos que faça algo que ainda não sabe fazer", acrescenta.

- O que os premiados com o Nobel descobriram? -

O americano David Baker "decifrou o código" da sequência de aminoácidos, nas palavras do Comitê Nobel. Ele desenhou uma estrutura de proteína completamente nova e, com ajuda do Rosetta, programa de computador criado por ele, conseguiu determinar qual sequência de aminoácidos permitiria obter um determinado resultado.

O Rosetta explorou uma base de dados de todas as estruturas proteicas conhecidas e buscou pequenos fragmentos de proteínas que mostrassem semelhanças com a estrutura desejada. Em seguida, otimizou estes fragmentos e propôs uma sequência de aminoácidos.

O britânico Demis Hassabis e o americano John Jumper fizeram o caminho inverso, prevendo como seria uma proteína a partir da sequência de aminoácidos.

Para isso, usaram inteligência artificial. Com redes neurais artificiais e aprendizagem profunda, com as quais John Hopfield e Geoffrey Hinton foram premiados na terça-feira com o Nobel de Física, eles treinaram seu modelo, AlphaFold2, alimentando-o com todas as sequências de aminoácidos e as estruturas correspondentes conhecidas até hoje.

Diante de uma sequência desconhecida, o AlphaFold2 compara as semelhanças com as sequências já conhecidas e elabora um mapa que estima a distância entre cada aminoácido nas proteínas, e pouco a pouco consegue montar o quebra-cabeças tridimensional. Assim, conseguiram prever a estrutura de quase a totalidade das 200 milhões de proteínas conhecidas.

- Para que serve? -

Visualizar a estrutura de uma proteína permite "compreender melhor porque certas doenças se desenvolvem, como se produz a resistência aos antibióticos ou porque alguns micróbios conseguem decompor o plástico", destaca o Comitê Nobel.

Criar proteínas com novas funções "pode levar a novos nanomateriais, a medicamentos específicos, ao desenvolvimento mais rápido de vacinas, a desenvolver sensores minimalistas e uma indústria química mais ecológica", acrescenta.

Durante o anúncio do Nobel, David Baker mencionou a criação de novos antivirais durante a pandemia de covid-19.

"Se trabalhássemos de forma aleatória, só fazendo combinações, levaria muito tempo" para criar novas proteínas, detalha Sacquin-Mora.

"Neste caso, partimos de uma proteína que conhecemos um pouco, que sabemos que funciona, e fazemos modificações, especialmente na sequência, de forma muito específica, para obter a função que nos interessa exatamente. Fazemos 50 tentativas ao invés de cinco milhões, o que representa uma economia considerável de tempo", diz.

D.Pan--ThChM