The China Mail - Las grandes posibilidades de los puntos cuánticos

USD -
AED 3.672504
AFN 65.000368
ALL 81.910403
AMD 376.168126
ANG 1.79008
AOA 917.000367
ARS 1431.790402
AUD 1.425923
AWG 1.8025
AZN 1.70397
BAM 1.654023
BBD 2.008288
BDT 121.941731
BGN 1.67937
BHD 0.375999
BIF 2954.881813
BMD 1
BND 1.269737
BOB 6.889932
BRL 5.217404
BSD 0.997082
BTN 90.316715
BWP 13.200558
BYN 2.864561
BYR 19600
BZD 2.005328
CAD 1.36855
CDF 2200.000362
CHF 0.77566
CLF 0.021803
CLP 860.890396
CNY 6.93895
CNH 6.929815
COP 3684.65
CRC 494.312656
CUC 1
CUP 26.5
CVE 93.82504
CZK 20.504104
DJF 177.555076
DKK 6.322204
DOP 62.928665
DZD 129.553047
EGP 46.73094
ERN 15
ETB 155.0074
EUR 0.846204
FJD 2.209504
FKP 0.735067
GBP 0.734457
GEL 2.69504
GGP 0.735067
GHS 10.957757
GIP 0.735067
GMD 73.000355
GNF 8752.167111
GTQ 7.647681
GYD 208.609244
HKD 7.81385
HNL 26.45504
HRK 6.376104
HTG 130.618631
HUF 319.703831
IDR 16855.5
ILS 3.110675
IMP 0.735067
INR 90.57645
IQD 1310.5
IRR 42125.000158
ISK 122.710386
JEP 0.735067
JMD 156.057339
JOD 0.70904
JPY 157.200504
KES 128.622775
KGS 87.450384
KHR 4033.00035
KMF 419.00035
KPW 900.021111
KRW 1463.803789
KWD 0.30721
KYD 0.830902
KZT 493.331642
LAK 21426.698803
LBP 89293.839063
LKR 308.47816
LRD 187.449786
LSL 16.086092
LTL 2.95274
LVL 0.60489
LYD 6.314009
MAD 9.185039
MDL 17.000296
MGA 4426.402808
MKD 52.129054
MMK 2100.115486
MNT 3570.277081
MOP 8.023933
MRU 39.850379
MUR 46.060378
MVR 15.450378
MWK 1737.000345
MXN 17.263604
MYR 3.947504
MZN 63.750377
NAD 16.086092
NGN 1366.980377
NIO 36.694998
NOK 9.690604
NPR 144.506744
NZD 1.661958
OMR 0.383441
PAB 0.997082
PEN 3.367504
PGK 4.275868
PHP 58.511038
PKR 278.812127
PLN 3.56949
PYG 6588.016407
QAR 3.64135
RON 4.310404
RSD 99.553038
RUB 76.792845
RWF 1455.283522
SAR 3.749738
SBD 8.058149
SCR 13.675619
SDG 601.503676
SEK 9.023204
SGD 1.272904
SHP 0.750259
SLE 24.450371
SLL 20969.499267
SOS 568.818978
SRD 37.818038
STD 20697.981008
STN 20.719692
SVC 8.724259
SYP 11059.574895
SZL 16.08271
THB 31.535038
TJS 9.342721
TMT 3.505
TND 2.847504
TOP 2.40776
TRY 43.612504
TTD 6.752083
TWD 31.590367
TZS 2577.445135
UAH 42.828111
UGX 3547.71872
UYU 38.538627
UZS 12244.069517
VES 377.985125
VND 25950
VUV 119.620171
WST 2.730723
XAF 554.743964
XAG 0.012866
XAU 0.000202
XCD 2.70255
XCG 1.797032
XDR 0.689923
XOF 554.743964
XPF 101.703591
YER 238.403589
ZAR 16.04457
ZMK 9001.203584
ZMW 18.570764
ZWL 321.999592
Las grandes posibilidades de los puntos cuánticos
Las grandes posibilidades de los puntos cuánticos / Foto: © AFP

Las grandes posibilidades de los puntos cuánticos

El Premio Nobel de Química 2023 recompensó el miércoles a los descubridores de puntos cuánticos, un tipo de nanopartículas fundamentales en las nuevas pantallas de televisión y la cirugía tumoral.

Tamaño del texto:

Esas partículas podrían ser claves en el futuro para la computación cuántica y nuevas fuentes de energía.

- ¿Qué es un punto cuántico?

Las propiedades de los materiales normalmente dependen de los elementos que los componen.

Las propiedades de un material simple, como un átomo de hierro, dependen del número de electrones que orbitan alrededor de su núcleo.

Pero en 1937 un físico inglés, Herbert Fröhlich, postuló que a escala nanométrica (una milmillonésima de metro), las propiedades de una partícula responden a las leyes de la física cuántica.

A dicha escala, las propiedades de un electrón activado, por ejemplo con luz infrarroja, dependen del espacio por el cual se desplaza.

"Cuanto más pequeño es el espacio, mayor es la energía de los electrones", explicó el profesor Heiner Linke, miembro del Comité Nobel de Química. Como consecuencia, la luz que emitirá cuando se activa "se inclinará hacia el azul en un espacio más pequeño y hacia el rojo en un espacio más grande".

El único problema en la época de Herbert Fröhlich era la imposibilidad de fabricar materiales a una escala tan pequeña y medir sus propiedades. Habría que esperar más de cuarenta años para lograrlo.

- ¿Quién descubrió qué?

El ruso Alexei Ekimov y el estadounidense Louis Brus fueron los primeros en descubrir materiales de puntos cuánticos, cuya fabricación controlada fue posteriormente posible gracias al tercer miembro del trío premiado el miércoles, el tunecino-estadounidense Moungi Bawendi.

Alexei Ekimov hizo su descubrimiento en el Instituto de Óptica Vavilov a principios de la década de 1980.

En ese momento, este físico estaba trabajando en nanocristales de vidrio coloreado y "dopados" con una mezcla de cobre y cloro.

El científico observó que emitían luz más o menos roja o azulada según el tamaño de los cristales. Sin embargo, se enfrentó al problema de que este descubrimiento se aplicaba a un material "inamovible", sin posibilidad de manipulación posterior.

En ese mismo momento, y sin conocer los trabajos de Ekimov, el equipo estadounidense de Louis Brus estaba investigando la síntesis de nanopartículas en un coloide, una solución líquida que podía modificarse.

Brus encontró pruebas de efectos a nivel cuántico trabajando en cristales de sulfuro de cadmio.

"Durante mucho tiempo se pensó que no se podrían crear partículas, pero lo lograron", señaló el profesor Johan Aqvist, miembro del Comité Nobel.

Sin embargo, para que estas nanopartículas fueran útiles, "era necesario poder fabricarlas con un control extremo de su tamaño".

El químico Moungi Bawendi se adelantó en su laboratorio en el Instituto de Tecnología de Massachusetts.

En 1993, descubrió en un coloide la forma de controlar de manera precisa, mediante un calentamiento específico, la formación de nanocristales. Esto "abrió la puerta a su aplicación", continuó Aqvist.

- ¿Para qué sirve?

Los puntos cuánticos se encuentran en las pantallas QLED, la última generación de televisores, donde los nanocristales emiten diferentes colores según su tamaño.

Esto permite "mejorar la resolución de la pantalla y mantener la calidad del color durante más tiempo", explica Cyril Aymonier, director del Instituto de Química de la Materia Condensada de Burdeos, a AFP.

Sin embargo, hay un problema: "muchos de los puntos cuánticos utilizados hoy están hechos a base de cadmio", un metal pesado tóxico conocido por ser carcinogénico, señala este investigador francés cuyo laboratorio trabaja en puntos cuánticos basados en "nuevos elementos no tóxicos".

En medicina, los puntos cuánticos son útiles para diagnósticos por imágenes. Dependiendo de su tamaño, el color cambia para marcar, por ejemplo, "la vascularización de un tumor" canceroso, explicó el profesor Aqvist.

En el futuro, la investigación promete otras aplicaciones, empezando por paneles solares más eficientes y menos costosos.

"Actualmente, los paneles fotovoltaicos solo absorben una parte de la radiación solar. Pero a partir de estos nanocristales, podríamos desarrollar paneles solares que absorban todo el espectro de luz", apunta Cyril Aymonier.

Se esperan otras aplicaciones para las computadoras cuánticas, con capacidades de cálculo gigantescas, o para las comunicaciones cuánticas ultraseguras.

A.Sun--ThChM