The China Mail - In Canada lake, robot learns to mine without disrupting marine life

USD -
AED 3.672504
AFN 69.456103
ALL 84.764831
AMD 381.290295
ANG 1.789623
AOA 916.000367
ARS 1179.376574
AUD 1.538935
AWG 1.8025
AZN 1.70397
BAM 1.692527
BBD 2.010212
BDT 121.665008
BGN 1.696633
BHD 0.375579
BIF 2964.389252
BMD 1
BND 1.278698
BOB 6.879841
BRL 5.543904
BSD 0.99563
BTN 85.673489
BWP 13.382372
BYN 3.258189
BYR 19600
BZD 1.999913
CAD 1.35865
CDF 2877.000362
CHF 0.812438
CLF 0.024131
CLP 926.026567
CNY 7.181604
CNH 7.18941
COP 4135.519882
CRC 501.838951
CUC 1
CUP 26.5
CVE 95.422093
CZK 21.500904
DJF 177.292199
DKK 6.45704
DOP 58.803167
DZD 130.034183
EGP 49.707931
ERN 15
ETB 134.317771
EUR 0.865404
FJD 2.24825
FKP 0.736781
GBP 0.737708
GEL 2.740391
GGP 0.736781
GHS 10.254857
GIP 0.736781
GMD 70.503851
GNF 8627.060707
GTQ 7.650902
GYD 208.299078
HKD 7.849415
HNL 25.985029
HRK 6.522704
HTG 130.569859
HUF 348.50504
IDR 16299.3
ILS 3.620404
IMP 0.736781
INR 86.184504
IQD 1304.227424
IRR 42100.000352
ISK 124.650386
JEP 0.736781
JMD 159.404613
JOD 0.70904
JPY 144.10604
KES 128.631388
KGS 87.450384
KHR 3992.038423
KMF 426.503794
KPW 899.999993
KRW 1367.140383
KWD 0.30622
KYD 0.829648
KZT 510.665917
LAK 21481.545584
LBP 89206.525031
LKR 298.109126
LRD 199.125957
LSL 17.917528
LTL 2.95274
LVL 0.60489
LYD 5.439834
MAD 9.103111
MDL 17.04989
MGA 4495.694691
MKD 53.251698
MMK 2099.702644
MNT 3581.705956
MOP 8.049154
MRU 39.525767
MUR 45.510378
MVR 15.405039
MWK 1726.364069
MXN 18.95075
MYR 4.245504
MZN 63.950377
NAD 17.917528
NGN 1542.440377
NIO 36.640561
NOK 9.912804
NPR 137.077582
NZD 1.661972
OMR 0.384259
PAB 0.99563
PEN 3.593613
PGK 4.159058
PHP 56.090375
PKR 282.254944
PLN 3.698316
PYG 7944.268963
QAR 3.631864
RON 4.350504
RSD 101.423565
RUB 79.779066
RWF 1437.670373
SAR 3.753593
SBD 8.347391
SCR 14.210372
SDG 600.503676
SEK 9.483995
SGD 1.281904
SHP 0.785843
SLE 22.050371
SLL 20969.503664
SOS 568.99312
SRD 37.528038
STD 20697.981008
SVC 8.711869
SYP 13001.852669
SZL 17.905759
THB 32.405038
TJS 10.055644
TMT 3.5
TND 2.945956
TOP 2.342104
TRY 39.40328
TTD 6.751763
TWD 29.520367
TZS 2573.66622
UAH 41.29791
UGX 3587.901865
UYU 40.932889
UZS 12650.253126
VES 102.167038
VND 26075
VUV 119.102168
WST 2.619186
XAF 567.657825
XAG 0.027532
XAU 0.000291
XCD 2.70255
XDR 0.705984
XOF 567.657825
XPF 103.206265
YER 243.350363
ZAR 17.92535
ZMK 9001.203587
ZMW 24.069058
ZWL 321.999592
  • CMSC

    0.0900

    22.314

    +0.4%

  • CMSD

    0.0250

    22.285

    +0.11%

  • RBGPF

    0.0000

    69.04

    0%

  • SCS

    0.0400

    10.74

    +0.37%

  • RELX

    0.0300

    53

    +0.06%

  • RIO

    -0.1400

    59.33

    -0.24%

  • GSK

    0.1300

    41.45

    +0.31%

  • NGG

    0.2700

    71.48

    +0.38%

  • BP

    0.1750

    30.4

    +0.58%

  • BTI

    0.7150

    48.215

    +1.48%

  • BCC

    0.7900

    91.02

    +0.87%

  • JRI

    0.0200

    13.13

    +0.15%

  • VOD

    0.0100

    9.85

    +0.1%

  • BCE

    -0.0600

    22.445

    -0.27%

  • RYCEF

    0.1000

    12

    +0.83%

  • AZN

    -0.1200

    73.71

    -0.16%

In Canada lake, robot learns to mine without disrupting marine life
In Canada lake, robot learns to mine without disrupting marine life / Photo: © AFP

In Canada lake, robot learns to mine without disrupting marine life

Three robotic arms extended under the water in a Canadian lake, delicately selecting pebbles from the bed, before storing them back inside the machine.

Text size:

The exercise was part of a series of tests the robot was undergoing before planned deployment in the ocean, where its operators hope the machine can transform the search for the world's most sought-after metals.

The robot was made by Impossible Metals, a company founded in California in 2020, which says it is trying to develop technology that allows the seabed to be harvested with limited ecological disruption.

Conventional underwater harvesting involves scooping up huge amounts of material in search of potato-sized things called poly-metallic nodules.

These nodules contain nickel, copper, cobalt, or other metals needed for electric vehicle batteries, among other key products.

Impossible Metals' co-founder Jason Gillham told AFP his company's robot looks for the nodules "in a selective way."

The prototype, being tested in the province of Ontario, remains stationary in the water, hovering over the lake bottom.

In a lab, company staff monitor the yellow robot on screens, using what looks like a video game console to direct its movements.

Using lights, cameras and artificial intelligence, the robot tries to identify the sought-after nodules while leaving aquatic life -- such as octopuses' eggs, coral, or sponges -- undisturbed.

- 'A bit like bulldozers' -

In a first for the nascent sector, Impossible Metals has requested a permit from US President Donald Trump to use its robot in American waters around Samoa, in the Pacific.

The company is hoping that its promise of limited ecological disruption will give it added appeal.

Competitors, like The Metals Company, use giant machines that roll along the seabed and suck up the nodules, a highly controversial technique.

Douglas McCauley, a marine biologist at the University of California, Santa Barbara, told AFP this method scoops up ocean floor using collectors or excavators, "a bit like bulldozers," he explained.

Everything is then brought up to ships, where the nodules are separated from waste, which is tossed back into the ocean.

This creates large plumes of sediment and toxins with a multitude of potential impacts, he said.

A less invasive approach, like that advocated by Impossible Metals, would reduce the risk of environmental damage, McCauley explained.

But he noted lighter-touch harvesting is not without risk.

The nodules themselves also harbor living organisms, and removing them even with a selective technique, involves destroying the habitat, he said.

Impossible Metals admits its technology cannot detect microscopic life, but the company claims to have a policy of leaving 60 percent of the nodules untouched.

McCauley is unconvinced, explaining "ecosystems in the deep ocean are especially fragile and sensitive."

"Life down there moves very slowly, so they reproduce very slowly, they grow very slowly."

Duncan Currie of the Deep Sea Conservation Coalition said it was impossible to assess the impact of any deep sea harvesting.

"We don't know enough yet either in terms of the biodiversity and the ecosystem down there," he told AFP.

According to the international scientific initiative Ocean Census, only 250,000 species are known, out of the two million that are estimated to populate the oceans.

- High demand -

Mining is "always going to have some impact," said Impossible Metals chief executive and co-founder Oliver Gunasekara, who has spent most of his career in the semiconductor field.

But, he added, "we need a lot more critical minerals, as we want to electrify everything."

Illustrating the global rush toward underwater mining, Impossible Metals has raised US$15 million from investors to build and test a first series of its Eureka 3 robot in 2026.

The commercial version will be the size of a shipping container and will expand from three to 16 arms, and its battery will grow from 14 to nearly 200 kilowatt-hours.

The robot will be fully autonomous and self-propel, without cables or tethers to the surface, and be equipped with sensors.

While awaiting the US green light, the company hopes to finalize its technology within two to three years, conduct ocean tests, build a fleet, and operate through partnerships elsewhere in the world.

N.Lo--ThChM