The China Mail - Britain's energy grid bets on flywheels to keep the lights on

USD -
AED 3.672504
AFN 66.344071
ALL 83.58702
AMD 382.869053
ANG 1.789982
AOA 917.000367
ARS 1405.057166
AUD 1.540832
AWG 1.805
AZN 1.70397
BAM 1.691481
BBD 2.013336
BDT 122.007014
BGN 1.69079
BHD 0.374011
BIF 2943.839757
BMD 1
BND 1.3018
BOB 6.91701
BRL 5.332404
BSD 0.999615
BTN 88.59887
BWP 13.420625
BYN 3.406804
BYR 19600
BZD 2.010326
CAD 1.40485
CDF 2150.000362
CHF 0.80538
CLF 0.024066
CLP 944.120396
CNY 7.11935
CNH 7.12515
COP 3780
CRC 501.883251
CUC 1
CUP 26.5
CVE 95.363087
CZK 21.009504
DJF 177.720393
DKK 6.457204
DOP 64.223754
DZD 129.411663
EGP 46.950698
ERN 15
ETB 154.306137
EUR 0.86435
FJD 2.28425
FKP 0.760233
GBP 0.759936
GEL 2.70504
GGP 0.760233
GHS 10.930743
GIP 0.760233
GMD 73.000355
GNF 8677.076622
GTQ 7.659909
GYD 209.133877
HKD 7.78025
HNL 26.282902
HRK 6.514104
HTG 133.048509
HUF 332.660388
IDR 16685.5
ILS 3.26205
IMP 0.760233
INR 88.639504
IQD 1309.474904
IRR 42100.000352
ISK 126.580386
JEP 0.760233
JMD 160.439
JOD 0.70904
JPY 153.43504
KES 129.203801
KGS 87.450384
KHR 4023.264362
KMF 421.00035
KPW 900.018268
KRW 1455.990383
KWD 0.306904
KYD 0.83302
KZT 524.767675
LAK 21703.220673
LBP 89512.834262
LKR 304.684561
LRD 182.526573
LSL 17.315523
LTL 2.95274
LVL 0.60489
LYD 5.458091
MAD 9.265955
MDL 17.042585
MGA 4492.856402
MKD 53.206947
MMK 2099.87471
MNT 3580.787673
MOP 8.007472
MRU 39.595594
MUR 45.910378
MVR 15.405039
MWK 1733.369658
MXN 18.451604
MYR 4.176039
MZN 63.950377
NAD 17.315148
NGN 1436.000344
NIO 36.782862
NOK 10.160376
NPR 141.758018
NZD 1.776515
OMR 0.38142
PAB 0.999671
PEN 3.37342
PGK 4.220486
PHP 58.805504
PKR 282.656184
PLN 3.665615
PYG 7072.77311
QAR 3.643196
RON 4.398804
RSD 102.170373
RUB 80.869377
RWF 1452.42265
SAR 3.750713
SBD 8.230592
SCR 13.652393
SDG 600.503676
SEK 9.529804
SGD 1.301038
SHP 0.750259
SLE 23.203667
SLL 20969.499529
SOS 571.228422
SRD 38.599038
STD 20697.981008
STN 21.189281
SVC 8.746265
SYP 11056.858374
SZL 17.321588
THB 32.395038
TJS 9.226139
TMT 3.51
TND 2.954772
TOP 2.342104
TRY 42.209038
TTD 6.77604
TWD 30.981804
TZS 2455.000335
UAH 41.915651
UGX 3498.408635
UYU 39.809213
UZS 12055.19496
VES 228.194038
VND 26310
VUV 122.303025
WST 2.820887
XAF 567.301896
XAG 0.020684
XAU 0.00025
XCD 2.70255
XCG 1.801521
XDR 0.707015
XOF 567.306803
XPF 103.14423
YER 238.503589
ZAR 17.303704
ZMK 9001.203584
ZMW 22.615629
ZWL 321.999592
  • SCS

    0.0000

    15.76

    0%

  • JRI

    -0.0100

    13.74

    -0.07%

  • CMSD

    0.0900

    24.1

    +0.37%

  • BCC

    -0.0900

    70.64

    -0.13%

  • NGG

    1.4600

    77.75

    +1.88%

  • GSK

    -0.4700

    46.63

    -1.01%

  • RIO

    0.0600

    69.33

    +0.09%

  • AZN

    0.8100

    84.58

    +0.96%

  • CMSC

    0.0700

    23.85

    +0.29%

  • RBGPF

    -0.7800

    75.22

    -1.04%

  • RELX

    -1.1200

    42.27

    -2.65%

  • BCE

    0.0200

    23.19

    +0.09%

  • VOD

    0.2400

    11.58

    +2.07%

  • BTI

    0.3800

    54.59

    +0.7%

  • BP

    0.7600

    36.58

    +2.08%

  • RYCEF

    0.0800

    14.88

    +0.54%

Britain's energy grid bets on flywheels to keep the lights on
Britain's energy grid bets on flywheels to keep the lights on / Photo: © AFP

Britain's energy grid bets on flywheels to keep the lights on

Britain's energy operator is betting on an age-old technology to future-proof its grid, as the power plants that traditionally helped stabilise it are closed and replaced by renewable energy systems.

Text size:

Spinning metal devices known as flywheels have for centuries been used to provide inertia -- resistance to sudden changes in motion -- to various machines, from a potter's wheel to the steam engine.

Grid operators are now looking to the technology to add inertia to renewable-heavy electricity systems to prevent blackouts like the one that hit Spain and Portugal this year.

In an electricity grid, inertia is generally provided by large spinning generators found in coal-fired and gas power plants, helping maintain a steady frequency by smoothing fluctuations in supply and demand.

But renewable energy sources like solar and wind power don't add inertia to the grid, and usually cannot help with other issues, such as voltage control.

Flywheels can mimic the rotational inertia of power plant generators, spinning quicker or slower to respond to fluctuations.

Without rotating turbines, "the system is more prone to fluctuations than it would be otherwise", explained David Brayshaw, a professor of climate science at the University of Reading in England.

"As we get to ever higher levels of renewables, we're going to have to think about this more carefully," Brayshaw told AFP.

- Flywheels and batteries -

The Iberian Peninsula, which is powered by a high share of renewables, went dark on April 28 after its grid was unable to absorb a sudden surge in voltage and deviations in frequency.

Spain's government has since pointed fingers at conventional power plants for failing to control voltage levels.

It could serve as a wake-up call similar to a 2019 outage which plunged parts of Britain into darkness following a drop in grid frequency.

That blackout prompted UK energy operator NESO to launch what it called a "world-first" program to contract grid-stabilising projects.

Flywheels and batteries can add synthetic inertia to the grid, but engineering professor Keith Pullen says steel flywheels can be more cost-effective and durable than lithium-ion batteries.

"I'm not saying that flywheels are the only technology, but they could be a very, very important one," said Pullen, a professor at City St George's, University of London and director of flywheel startup Levistor.

In the coming years, Pullen warned the grid will also become more unstable due to greater, but spikier demand.

With electric cars, heat pumps and energy-guzzling data centres being hooked onto the grid, "we will have more shock loads... which the flywheel smooths out".

- Carbon-free inertia -

Norwegian company Statkraft's "Greener Grid Park" in Liverpool was one of the projects contracted by NESO to keep the lights on.

Operational since 2023, it is a stone's throw from a former coal-fired power station site which loomed over the northern English city for most of the 20th century.

But now, instead of steam turbines, two giant flywheels weighing 40 tons (40,000 kilograms) each whirr at the Statkraft site, which supplies one percent of the inertia for the grid needed in England, Scotland and Wales.

Each flywheel is attached to a synchronous compensator, a spinning machine that further boosts inertia and provides voltage control services in the Liverpool region.

"We are providing that inertia without burning any fossil fuels, without creating any carbon emissions," said Guy Nicholson, Statkraft's zero-carbon grid solutions head.

According to NESO, 11 other similar synchronous compensator and flywheel projects were operational in Britain as of 2023, with several more contracted.

- 'Not fast enough' -

The government is "working closely with our industry partners who are developing world-leading technology, including flywheels, static and synchronous compensators, as we overhaul the energy system", a Department for Energy Security and Net Zero spokesperson told AFP.

But, "we aren't building them fast enough to decarbonise the grid", warned Nicholson.

Britain aims to power the grid with clean energy 95 percent of the time by 2030, before completely switching to renewables in the next decade.

"At the moment... we can't even do it for one hour," said Nicholson.

Even when there is sufficient solar and wind energy being generated, "we still have to run gas turbines to keep the grid stable", he explained.

Still, Britain and neighbouring Ireland seem to be ahead of the curve in procuring technology to stabilise renewable-heavy grids.

"In GB and Ireland, the system operators are leading by contracting these services," Nicholson said. "On the continent, there hasn't been the same drive for that."

"I think these things are driven by events. So, the Spanish blackout will drive change."

T.Wu--ThChM