The China Mail - Science of sleep: Why a good night's rest gets harder with age

USD -
AED 3.672498
AFN 65.999546
ALL 83.886299
AMD 382.569343
ANG 1.789982
AOA 916.999667
ARS 1450.724895
AUD 1.535992
AWG 1.8025
AZN 1.703625
BAM 1.701894
BBD 2.013462
BDT 121.860805
BGN 1.698675
BHD 0.376969
BIF 2951
BMD 1
BND 1.306514
BOB 6.907654
BRL 5.340706
BSD 0.999682
BTN 88.718716
BWP 13.495075
BYN 3.407518
BYR 19600
BZD 2.010599
CAD 1.40972
CDF 2221.000107
CHF 0.8083
CLF 0.024025
CLP 942.260127
CNY 7.12675
CNH 7.124335
COP 3834.5
CRC 501.842642
CUC 1
CUP 26.5
CVE 96.374981
CZK 21.130974
DJF 177.719889
DKK 6.481435
DOP 64.297733
DZD 130.702957
EGP 47.350598
ERN 15
ETB 153.125026
EUR 0.868055
FJD 2.281097
FKP 0.766404
GBP 0.765345
GEL 2.714973
GGP 0.766404
GHS 10.924959
GIP 0.766404
GMD 73.496433
GNF 8691.000207
GTQ 7.661048
GYD 209.152772
HKD 7.774794
HNL 26.359887
HRK 6.537806
HTG 130.911876
HUF 335.451502
IDR 16695.1
ILS 3.253855
IMP 0.766404
INR 88.641051
IQD 1310
IRR 42112.439107
ISK 127.05977
JEP 0.766404
JMD 160.956848
JOD 0.709027
JPY 153.633017
KES 129.201234
KGS 87.449557
KHR 4027.000211
KMF 427.999878
KPW 900.033283
KRW 1447.48028
KWD 0.30713
KYD 0.83313
KZT 525.140102
LAK 21712.500514
LBP 89549.999727
LKR 304.599802
LRD 182.625016
LSL 17.379986
LTL 2.95274
LVL 0.60489
LYD 5.455014
MAD 9.301979
MDL 17.135125
MGA 4500.000656
MKD 53.533982
MMK 2099.044592
MNT 3585.031206
MOP 8.006805
MRU 38.249781
MUR 45.999702
MVR 15.404977
MWK 1736.000423
MXN 18.58737
MYR 4.18301
MZN 63.960022
NAD 17.380215
NGN 1440.729964
NIO 36.770288
NOK 10.170899
NPR 141.949154
NZD 1.7668
OMR 0.384495
PAB 0.999687
PEN 3.376505
PGK 4.216027
PHP 58.845981
PKR 280.85006
PLN 3.69242
PYG 7077.158694
QAR 3.640957
RON 4.414195
RSD 101.74198
RUB 81.125016
RWF 1450
SAR 3.750543
SBD 8.223823
SCR 13.740948
SDG 600.503506
SEK 9.536655
SGD 1.304925
SHP 0.750259
SLE 23.200677
SLL 20969.499529
SOS 571.507056
SRD 38.558019
STD 20697.981008
STN 21.45
SVC 8.747031
SYP 11056.895466
SZL 17.38022
THB 32.350333
TJS 9.257197
TMT 3.5
TND 2.960056
TOP 2.342104
TRY 42.11875
TTD 6.775354
TWD 30.898017
TZS 2459.806973
UAH 42.064759
UGX 3491.230589
UYU 39.758439
UZS 11987.497487
VES 227.27225
VND 26315
VUV 122.169446
WST 2.82328
XAF 570.814334
XAG 0.020533
XAU 0.000249
XCD 2.70255
XCG 1.801656
XDR 0.70875
XOF 570.495888
XPF 104.149691
YER 238.497406
ZAR 17.363401
ZMK 9001.204121
ZMW 22.392878
ZWL 321.999592
  • RYCEF

    0.0600

    15

    +0.4%

  • CMSC

    -0.0500

    23.75

    -0.21%

  • SCS

    -0.0500

    15.88

    -0.31%

  • GSK

    0.1100

    46.8

    +0.24%

  • NGG

    1.1600

    76.53

    +1.52%

  • RIO

    0.1850

    69.245

    +0.27%

  • RELX

    -1.4700

    43.11

    -3.41%

  • BTI

    0.5100

    54.39

    +0.94%

  • VOD

    0.0800

    11.35

    +0.7%

  • AZN

    2.7100

    83.86

    +3.23%

  • BCE

    0.8500

    23.24

    +3.66%

  • BCC

    -1.1810

    70.199

    -1.68%

  • RBGPF

    0.0000

    76

    0%

  • CMSD

    0.0100

    24.01

    +0.04%

  • JRI

    0.0050

    13.775

    +0.04%

  • BP

    0.1450

    35.825

    +0.4%

Science of sleep: Why a good night's rest gets harder with age
Science of sleep: Why a good night's rest gets harder with age

Science of sleep: Why a good night's rest gets harder with age

It's well known that getting a good night's sleep becomes more difficult as we age, but the underlying biology for why this happens has remained poorly understood.

Text size:

A team of US scientists has now identified how the brain circuitry involved in regulating sleepfulness and wakefulness degrades over time in mice, which they say paves the way for better medicines in humans.

"More than half of people 65 and older complain about the quality of sleep," Stanford University professor Luis de Lecea, who co-authored a study about the finding published Thursday in Science, told AFP.

Research has shown that sleep deprivation is linked to an increased risk of multiple poor health outcomes, from hypertension to heart attacks, diabetes, depression and a build up of brain plaque linked to Alzheimer's.

Insomnia is often treated with a class of drugs known as hypnotics, which include Ambien, but these don't work very well in the elderly population.

For the new study, de Lecea and colleagues decided to investigate hypocretins, key brain chemicals that are generated only by a small cluster of neurons in the brain's hypothalamus, a region located between the eyes and ears.

Of the billions of neurons in the brain, only around 50,000 produce hypocretins.

In 1998, de Lecea and other scientists discovered that hypocretins transmit signals that play a vital role in stabilizing wakefulness.

Since many species experience fragmented sleep as they grow old, it's hypothesized that the same mechanisms are at play across mammals, and prior research had shown degradation of hypocretins leads to narcolepsy in humans, dogs and mice.

The team selected young (three to five months) and old mice (18 to 22 months) and used light carried by fibers to stimulate specific neurons. They recorded the results using imaging techniques.

What they found was that the older mice had lost approximately 38 percent of hypocretins compared to younger mice.

They also discovered that the hypocretins that remained in the older mice were more excitable and easily triggered, making the animals more prone to waking up.

This might be because of the deterioration over time of "potassium channels," which are biological on-off switches critical to the functions of many types of cells.

"The neurons tend to be more active and fire more, and if they fire more, you wake up more frequently," said de Lecea.

Identifying the specific pathway responsible for sleep loss could lead to better drugs, argued Laura Jacobson and Daniel Hoyer, of Australia's Florey Institute of Neuroscience and Mental Health, in a related commentary article.

Current treatments, such as hypnotics, "can induce cognitive complaints and falls," and medicines that target the specific channel might work better, they said.

These will need to be tested in clinical trials -- but an existing drug known as retigabine, which is currently used to treat epilepsy and which targets a similar pathway -- could be promising, said de Lecea.

N.Lo--ThChM