The China Mail - Viruses that could save millions of lives

USD -
AED 3.672498
AFN 66.489639
ALL 83.872087
AMD 382.479961
ANG 1.789982
AOA 916.999985
ARS 1450.743702
AUD 1.54464
AWG 1.8025
AZN 1.699936
BAM 1.69722
BBD 2.01352
BDT 122.007836
BGN 1.695365
BHD 0.376995
BIF 2949.338748
BMD 1
BND 1.304378
BOB 6.907594
BRL 5.359498
BSD 0.999679
BTN 88.558647
BWP 13.450775
BYN 3.407125
BYR 19600
BZD 2.010578
CAD 1.412195
CDF 2220.999879
CHF 0.806765
CLF 0.02406
CLP 943.870277
CNY 7.12675
CNH 7.121955
COP 3810.2
CRC 502.442792
CUC 1
CUP 26.5
CVE 95.686244
CZK 21.085038
DJF 177.719807
DKK 6.46671
DOP 64.320178
DZD 130.472159
EGP 47.297403
ERN 15
ETB 153.49263
EUR 0.86615
FJD 2.28525
FKP 0.766404
GBP 0.761505
GEL 2.71497
GGP 0.766404
GHS 10.92632
GIP 0.766404
GMD 73.509134
GNF 8677.881382
GTQ 7.6608
GYD 209.15339
HKD 7.77536
HNL 26.286056
HRK 6.525605
HTG 130.827172
HUF 334.42202
IDR 16704
ILS 3.272635
IMP 0.766404
INR 88.66155
IQD 1309.660176
IRR 42112.501708
ISK 126.640364
JEP 0.766404
JMD 160.35857
JOD 0.709002
JPY 152.931497
KES 129.149764
KGS 87.450218
KHR 4012.669762
KMF 427.999978
KPW 900.033283
KRW 1447.940003
KWD 0.30693
KYD 0.833167
KZT 526.13127
LAK 21717.265947
LBP 89523.367365
LKR 304.861328
LRD 182.946302
LSL 17.373217
LTL 2.95274
LVL 0.60489
LYD 5.466197
MAD 9.311066
MDL 17.114592
MGA 4508.159378
MKD 53.394772
MMK 2099.044592
MNT 3585.031206
MOP 8.005051
MRU 39.997917
MUR 45.999865
MVR 15.404993
MWK 1733.486063
MXN 18.621425
MYR 4.183006
MZN 63.960023
NAD 17.373217
NGN 1438.210482
NIO 36.78522
NOK 10.215903
NPR 141.693568
NZD 1.77559
OMR 0.384504
PAB 0.999779
PEN 3.375927
PGK 4.279045
PHP 58.9145
PKR 282.679805
PLN 3.68211
PYG 7081.988268
QAR 3.643566
RON 4.406497
RSD 101.52698
RUB 81.499636
RWF 1452.596867
SAR 3.750504
SBD 8.223823
SCR 14.35585
SDG 600.503157
SEK 9.57037
SGD 1.304195
SHP 0.750259
SLE 23.197576
SLL 20969.499529
SOS 571.349231
SRD 38.503505
STD 20697.981008
STN 21.260533
SVC 8.747304
SYP 11056.895466
SZL 17.359159
THB 32.393501
TJS 9.227278
TMT 3.5
TND 2.959939
TOP 2.342104
TRY 42.112499
TTD 6.773954
TWD 30.962802
TZS 2459.807029
UAH 42.066455
UGX 3491.096532
UYU 39.813947
UZS 11966.746503
VES 227.27225
VND 26315
VUV 122.169446
WST 2.82328
XAF 569.234174
XAG 0.020817
XAU 0.000251
XCD 2.70255
XCG 1.801686
XDR 0.70875
XOF 569.231704
XPF 103.489719
YER 238.495377
ZAR 17.383798
ZMK 9001.199567
ZMW 22.61803
ZWL 321.999592
  • BCC

    -0.6300

    70.75

    -0.89%

  • RYCEF

    0.0600

    15

    +0.4%

  • CMSC

    -0.0500

    23.78

    -0.21%

  • JRI

    -0.0200

    13.75

    -0.15%

  • VOD

    0.0700

    11.34

    +0.62%

  • NGG

    0.9400

    76.31

    +1.23%

  • SCS

    -0.1300

    15.8

    -0.82%

  • RIO

    0.2000

    69.26

    +0.29%

  • CMSD

    -0.0600

    23.95

    -0.25%

  • BCE

    0.7900

    23.18

    +3.41%

  • GSK

    0.4150

    47.105

    +0.88%

  • AZN

    2.6200

    83.77

    +3.13%

  • BTI

    0.3400

    54.22

    +0.63%

  • RELX

    -1.1900

    43.39

    -2.74%

  • BP

    0.1400

    35.82

    +0.39%

  • RBGPF

    0.0000

    76

    0%

Viruses that could save millions of lives
Viruses that could save millions of lives

Viruses that could save millions of lives

It may seem strange after a pandemic that has killed millions and turned the world upside down, but viruses could save just as many lives.

Text size:

In a petri dish in a laboratory in the Georgian capital Tbilisi, a battle is going on between antibiotic resistant bacteria and "friendly" viruses.

This small nation in the Caucasus has pioneered research on a groundbreaking way to tackle the looming nightmare of bacteria becoming resistant to the antibiotics on which the world depends.

Long overlooked in the West, bacteriophages or bacteria-eating viruses are now being used on some of the most difficult medical cases, including a Belgian woman who developed a life-threatening infection after being injured in the 2016 Brussels airport bombing.

After two years of unsuccessful antibiotic treatment, bacteriophages sent from Tbilisi cured her infection in three months.

"We use those phages that kill harmful bacteria" to cure patients when antibiotics fail, Mzia Kutateladze of the Eliava Institute of Bacteriophages told AFP.

Even a banal infection can "kill a patient because the pathogen has developed resistance to antibiotics," Kutateladze said.

In such cases, phagotherapy "is one of the best alternatives", she added.

Phages have been known about for a century, but were largely forgotten and dismissed after antibiotics revolutionised medicine in the 1930s.

- Stalin's henchman -

It didn't help that the man who did most to develop them, Georgian scientist Giorgi Eliava, was executed in 1937 on the orders of another Georgian, Lavrentiy Beria, Stalin's most notorious henchman and the head of his secret police.

Eliava had worked in the Pasteur Institute in Paris with French-Canadian microbiologist Felix d'Herelle, one of the two men credited with discovering phages, and persuaded Stalin to invite him to Tbilisi in 1934.

But their collaboration was cut short when Beria had Eliava killed, although his motive still remains a mystery.

With the World Health Organization now declaring antimicrobial resistance a global health crisis, phages are making a comeback, especially as they can target bacteria while leaving human cells intact.

A recent study warned that superbugs could kill as many as 10 million people a year when antimicrobial resistance due to overuse of antibiotics reaches a tipping point. That could come within three decades.

- 'Training' viruses -

While phages-based medicines cannot completely replace antibiotics, researchers say they have major pluses in being cheap, not having side-effects nor damaging organs or gut flora.

"We produce six standard phages that are of wide spectrum and can heal multiple infectious diseases," said Eliava Institute physician Lia Nadareishvili.

In some 10 to 15 percent of patients, however, standard phages don't work and "we have to find ones capable of killing the particular bacterial strain," she added.

Tailored phages to target rare infections can be selected from the institute's massive collection -- the world's richest -- or be found in sewage or polluted water or soil, Kutateladze said.

The institute can even "train" phages so that "they can kill more and more different harmful bacteria."

"It is a cheap and easily accessible therapy," she added.

- Last-resort treatment -

A 34-year-old American mechanical engineer suffering from a chronic bacterial disease for six years told AFP he "already felt improvement" after two weeks at the Tbilisi institute.

"I've tried every possible treatment in the United States," said Andrew, who would only give his first name.

He is one of the hundreds of patients from around the globe who arrive in Georgia every year for last-resort treatment, said Nadareishvili.

With the traditional antimicrobial armoury depleting rapidly, more clinical studies are needed so that phagotherapy can be more widely approved, Kutateladze argued.

In 2019, the United States Food and Drug Administration (FDA) authorised a clinical study on the use of bacteriophages to cure secondary infections in Covid patients.

Beyond medicine, phages are already being used to stop food going off, and they "can be used in agriculture to protect crops and animals from harmful bacteria," Kutateladze said.

The institute has already conducted research on bacteria targeting cotton and rice.

Bacteriophages also have potential to counter biological weapons and combat bioterrorism, with Canadian researchers publishing a 2017 study on using them to counter an anthrax attack on crowded public places.

B.Chan--ThChM