The China Mail - Particle physics pushing cancer treatment boundaries

USD -
AED 3.672504
AFN 66.344071
ALL 83.58702
AMD 382.869053
ANG 1.789982
AOA 917.000367
ARS 1405.057166
AUD 1.540832
AWG 1.805
AZN 1.70397
BAM 1.691481
BBD 2.013336
BDT 122.007014
BGN 1.69079
BHD 0.374011
BIF 2943.839757
BMD 1
BND 1.3018
BOB 6.91701
BRL 5.332404
BSD 0.999615
BTN 88.59887
BWP 13.420625
BYN 3.406804
BYR 19600
BZD 2.010326
CAD 1.40485
CDF 2150.000362
CHF 0.80538
CLF 0.024066
CLP 944.120396
CNY 7.11935
CNH 7.12515
COP 3780
CRC 501.883251
CUC 1
CUP 26.5
CVE 95.363087
CZK 21.009504
DJF 177.720393
DKK 6.457204
DOP 64.223754
DZD 129.411663
EGP 46.950698
ERN 15
ETB 154.306137
EUR 0.86435
FJD 2.28425
FKP 0.759642
GBP 0.759936
GEL 2.70504
GGP 0.759642
GHS 10.930743
GIP 0.759642
GMD 73.000355
GNF 8677.076622
GTQ 7.659909
GYD 209.133877
HKD 7.78025
HNL 26.282902
HRK 6.514104
HTG 133.048509
HUF 332.660388
IDR 16685.5
ILS 3.26205
IMP 0.759642
INR 88.639504
IQD 1309.474904
IRR 42100.000352
ISK 126.580386
JEP 0.759642
JMD 160.439
JOD 0.70904
JPY 153.43504
KES 129.203801
KGS 87.450384
KHR 4023.264362
KMF 421.00035
KPW 899.998686
KRW 1455.990383
KWD 0.306904
KYD 0.83302
KZT 524.767675
LAK 21703.220673
LBP 89512.834262
LKR 304.684561
LRD 182.526573
LSL 17.315523
LTL 2.95274
LVL 0.60489
LYD 5.458091
MAD 9.265955
MDL 17.042585
MGA 4492.856402
MKD 53.206947
MMK 2099.464216
MNT 3582.836755
MOP 8.007472
MRU 39.595594
MUR 45.910378
MVR 15.405039
MWK 1733.369658
MXN 18.451604
MYR 4.176039
MZN 63.950377
NAD 17.315148
NGN 1436.000344
NIO 36.782862
NOK 10.160376
NPR 141.758018
NZD 1.776515
OMR 0.38142
PAB 0.999671
PEN 3.37342
PGK 4.220486
PHP 58.805504
PKR 282.656184
PLN 3.665615
PYG 7072.77311
QAR 3.643196
RON 4.398804
RSD 102.170373
RUB 80.869377
RWF 1452.42265
SAR 3.750713
SBD 8.230592
SCR 13.652393
SDG 600.503676
SEK 9.529804
SGD 1.301038
SHP 0.750259
SLE 23.203667
SLL 20969.499529
SOS 571.228422
SRD 38.599038
STD 20697.981008
STN 21.189281
SVC 8.746265
SYP 11056.879504
SZL 17.321588
THB 32.395038
TJS 9.226139
TMT 3.51
TND 2.954772
TOP 2.342104
TRY 42.209038
TTD 6.77604
TWD 30.981804
TZS 2455.000335
UAH 41.915651
UGX 3498.408635
UYU 39.809213
UZS 12055.19496
VES 228.194038
VND 26310
VUV 122.189231
WST 2.820904
XAF 567.301896
XAG 0.020684
XAU 0.00025
XCD 2.70255
XCG 1.801521
XDR 0.707015
XOF 567.306803
XPF 103.14423
YER 238.503589
ZAR 17.303704
ZMK 9001.203584
ZMW 22.615629
ZWL 321.999592
  • SCS

    0.0000

    15.76

    0%

  • RIO

    0.0600

    69.33

    +0.09%

  • CMSC

    0.0700

    23.85

    +0.29%

  • BCE

    0.0200

    23.19

    +0.09%

  • CMSD

    0.0900

    24.1

    +0.37%

  • BTI

    0.3800

    54.59

    +0.7%

  • JRI

    -0.0100

    13.74

    -0.07%

  • NGG

    1.4600

    77.75

    +1.88%

  • BCC

    -0.0900

    70.64

    -0.13%

  • BP

    0.7600

    36.58

    +2.08%

  • GSK

    -0.4700

    46.63

    -1.01%

  • AZN

    0.8100

    84.58

    +0.96%

  • RBGPF

    -0.7800

    75.22

    -1.04%

  • VOD

    0.2400

    11.58

    +2.07%

  • RELX

    -1.1200

    42.27

    -2.65%

  • RYCEF

    0.0800

    14.88

    +0.54%

Particle physics pushing cancer treatment boundaries
Particle physics pushing cancer treatment boundaries / Photo: © AFP

Particle physics pushing cancer treatment boundaries

Researchers at Europe's science lab CERN, who regularly use particle physics to challenge our understanding of the universe, are also applying their craft to upend the limits to cancer treatment.

Text size:

The physicists here are working with giant particle accelerators in search of ways to expand the reach of cancer radiation therapy, and take on hard-to-reach tumours that would otherwise have been fatal.

In one CERN lab, called CLEAR, facility coordinator Roberto Corsini stands next to a large, linear particle accelerator consisting of a 40-metre metal beam with tubes packed in aluminium foil at one end, and a vast array of measurement instruments and protruding colourful wires and cables.

The research here, he told AFP during a recent visit, is aimed at creating very high energy beams of electrons -- the negatively charged particles in the nucleus of an atom -- that eventually could help to combat cancerous cells more effectively.

They are researching a "technology to accelerate electrons to the energies that are needed to treat deep-seated tumours, which is above 100 million electron volts" (MeV), Corsini explained.

The idea is to use these very high energy electrons (VHEE) in combination with a new and promising treatment method called FLASH.

- Reducing 'collateral damage' -

This method entails delivering the radiation dose in a few hundred milliseconds, instead of minutes as is the current approach.

This has been shown to have the same destructive effect on the targeted tumour, but causes far less damage to the surrounding healthy tissue.

With traditional radiation therapy, "you do create some collateral damage," said Benjamin Fisch, a CERN knowledge transfer officer.

The effect of the brief but intense FLASH treatment, he told reporters, is to "reduce the toxicity to healthy tissue while still properly damaging cancer cells."

FLASH was first used on patients in 2018, based on currently available medical linear accelerators, linacs, that provide low-energy electron beams of around 6-10 MeV.

At such low energy though, the beams cannot penetrate deeply, meaning the highly-effective treatment has so far only been used on superficial tumours, found with skin cancer.

But the CERN physicists are now collaborating with the Lausanne University Hospital (CHUV) to build a machine for FLASH delivery that can accelerate electrons to 100 to 200 MeV, making it possible to use the method for much more hard-to-reach tumours.

- 'Game-changer' -

Deep-lying cancer tumours that can't be rooted out using surgery, chemotherapy or traditional radiation therapy are often today considered a death sentence.

"It is the ones which we don't cure at the moment which will be the targets," Professor Jean Bourhis, head of CHUV's radiology department, told AFP.

"For those particular cancers, which may be one third of the cancer cases, it could be a game-changer."

There are particular hopes that the FLASH method, with its far less harmful impact on surrounding tissue, could make it possible to go after tumours lodged in the brain or near other vital organs.

Bourhis said it might not relegate deaths from stubborn cancer tumours to the history books, "but at least there will be a new opportunity for more cures, if it works."

- 'Compact' -

One challenge is making the powerful accelerator compact enough to fit inside a hospital.

At CERN, a large gallery has been dedicated to housing the CLEAR accelerator, which requires 20 metres to push the electrons up to the required energy level -- and another 20 metres to condition, measure and deliver the beam.

But Corsini insisted that CERN had the know-how to "accelerate in a much more compact space".

The prototype being designed with CHUV will aim to do the same job with a machine that is 10 metres overall.

This "compact" solution, Corsini said, "reduces the cost, reduces power consumption and variability, and you can easily put it into a hospital without having to build a whole building."

Construction of the prototype is scheduled to begin next February, and patient clinical trials could begin in 2025, Bourhis said, "if everything goes smoothly".

K.Leung--ThChM