The China Mail - Climate: Could moon dust keep Earth cool?

USD -
AED 3.673099
AFN 71.025985
ALL 86.949831
AMD 389.450198
ANG 1.80229
AOA 916.000203
ARS 1164.994971
AUD 1.56509
AWG 1.8025
AZN 1.701759
BAM 1.71838
BBD 2.002943
BDT 121.466383
BGN 1.71689
BHD 0.376938
BIF 2973.281671
BMD 1
BND 1.309998
BOB 6.907549
BRL 5.619785
BSD 0.999671
BTN 85.150724
BWP 13.648225
BYN 3.271568
BYR 19600
BZD 2.008127
CAD 1.382625
CDF 2878.000017
CHF 0.823455
CLF 0.024644
CLP 945.690037
CNY 7.269498
CNH 7.26815
COP 4197
CRC 505.37044
CUC 1
CUP 26.5
CVE 97.14957
CZK 21.893987
DJF 177.719903
DKK 6.552957
DOP 58.850011
DZD 132.28903
EGP 50.803098
ERN 15
ETB 131.849836
EUR 0.87781
FJD 2.290499
FKP 0.746656
GBP 0.74558
GEL 2.745035
GGP 0.746656
GHS 15.297057
GIP 0.746656
GMD 71.500526
GNF 8656.000059
GTQ 7.699235
GYD 209.77442
HKD 7.758725
HNL 25.824996
HRK 6.615497
HTG 130.805895
HUF 354.894502
IDR 16717.55
ILS 3.623935
IMP 0.746656
INR 85.17125
IQD 1310
IRR 42100.000123
ISK 128.229838
JEP 0.746656
JMD 158.360167
JOD 0.709201
JPY 142.322502
KES 129.504675
KGS 87.450007
KHR 4002.999591
KMF 432.250165
KPW 900.101764
KRW 1431.070178
KWD 0.30622
KYD 0.833088
KZT 511.373521
LAK 21619.999738
LBP 89549.99972
LKR 299.461858
LRD 199.525007
LSL 18.560047
LTL 2.95274
LVL 0.60489
LYD 5.455025
MAD 9.26225
MDL 17.204811
MGA 4510.00033
MKD 54.016924
MMK 2099.785163
MNT 3572.381038
MOP 7.988121
MRU 39.725023
MUR 45.195004
MVR 15.405152
MWK 1735.999776
MXN 19.551245
MYR 4.324002
MZN 64.009864
NAD 18.559961
NGN 1603.189819
NIO 36.702674
NOK 10.376205
NPR 136.24151
NZD 1.684466
OMR 0.384994
PAB 0.999671
PEN 3.666498
PGK 4.030502
PHP 56.070013
PKR 281.049939
PLN 3.74768
PYG 8005.869096
QAR 3.641499
RON 4.368904
RSD 102.971863
RUB 81.998675
RWF 1417
SAR 3.750917
SBD 8.361298
SCR 14.236431
SDG 600.498111
SEK 9.645325
SGD 1.307665
SHP 0.785843
SLE 22.75011
SLL 20969.483762
SOS 571.498004
SRD 36.850246
STD 20697.981008
SVC 8.747337
SYP 13001.961096
SZL 18.560117
THB 33.448986
TJS 10.556725
TMT 3.51
TND 2.974021
TOP 2.342102
TRY 38.48222
TTD 6.782788
TWD 32.336697
TZS 2689.999794
UAH 41.532203
UGX 3663.759967
UYU 42.093703
UZS 12944.999923
VES 86.54811
VND 26005
VUV 121.306988
WST 2.770092
XAF 576.326032
XAG 0.030331
XAU 0.000301
XCD 2.70255
XDR 0.715661
XOF 575.000121
XPF 105.250222
YER 245.049681
ZAR 18.54225
ZMK 9001.195433
ZMW 27.966701
ZWL 321.999592
  • CMSD

    -0.1300

    22.35

    -0.58%

  • SCS

    0.1500

    10.01

    +1.5%

  • RBGPF

    -0.4500

    63

    -0.71%

  • NGG

    0.1900

    73.04

    +0.26%

  • CMSC

    -0.0800

    22.24

    -0.36%

  • RELX

    0.4300

    53.79

    +0.8%

  • RIO

    0.0100

    60.88

    +0.02%

  • BCC

    -0.8300

    94.5

    -0.88%

  • GSK

    0.9100

    38.97

    +2.34%

  • BTI

    0.4700

    42.86

    +1.1%

  • JRI

    0.1300

    12.93

    +1.01%

  • BCE

    0.1100

    21.92

    +0.5%

  • RYCEF

    -0.1300

    10.12

    -1.28%

  • VOD

    0.0100

    9.58

    +0.1%

  • AZN

    1.7800

    71.71

    +2.48%

  • BP

    -1.0600

    28.07

    -3.78%

Climate: Could moon dust keep Earth cool?
Climate: Could moon dust keep Earth cool? / Photo: © AFP/File

Climate: Could moon dust keep Earth cool?

Whether out-of-the-box thinking or a sign of desperation, scientists on Wednesday proposed the regular transport of moon dust to a gravity point between Earth and Sun to temper the ravages of global warming.

Text size:

Ideas for filtering solar radiation to keep Earth from overheating have been kicking around for decades, ranging from giant space-based screens to churning out reflective white clouds.

But the persistent failure to draw down planet-warming greenhouse gas emissions has pushed once-fanciful geoengineering schemes toward centre stage in climate policy, investment and research.

Blocking one to two percent of the Sun's rays is all it would take to lower Earth's surface by a degree or two Celsius -- roughly the amount it has warmed over the last century.

The solar radiation technique with the most traction so far is the 24/7 injection of billions of shiny sulphur particles into the upper atmosphere.

So-called stratospheric aerosol injection would be cheap, and scientists know it works because major volcanic eruptions basically do the same thing. When Mount Pinatubo in the Philippines blew its top in 1991, it lowered temperatures in the northern hemisphere by about 0.5C for nearly a year.

But there are serious potential side-effects, including the disruption of rain patterns upon which millions depend for growing food.

However, a new study in the peer-reviewed journal PLOS Climate explores the possibility of using moon dust as a solar shield.

A team of astronomers applied methods used to track planet formation around distant stars -- a messy process that kicks up vast quantities of space dust -- to Earth's moon.

Computer simulations showed that putting lunar dust at a gravitational sweet spot between Earth and Sun "blocked out a lot of sunlight with a little amount of mass", said lead author Ben Bromley, a professor of physics at the University of Utah.

- 'Balancing marbles' -

The scientists tested several scenarios involving different particle properties and quantities in different orbits, looking for the one that would throw the most shade.

Moon dust worked best. The quantities needed, they said, would require the equivalent of a major mining operation on Earth.

The authors stressed that their study was designed to calculate potential impact, not logistical feasibility.

"We aren't experts in climate change or rocket science," said co-author Benjamin Bromley, a professor at the Harvard-Smithsonian Center for Astrophysics.

"We were just exploring different kinds of dust on a variety of orbits to see how effective this approach might be," he added. "We don't want to miss a game changer for such a critical problem."

Experts not involved in the study praised its methodology but doubted whether it would actually work.

"Placing moon dust at the gravity mid-point between Earth and Sun, can indeed reflect heat," said University of Edinburgh professor Stuart Haszeldine.

"But this is like trying to balance marbles on a football -- within a week most dust has spun out of stable orbit."

For Joanna Haigh, an emeritus professor of atmospherics at Imperial College London, the study is a distraction.

The main problem, she said, "is the suggestion that the implementation of such schemes will solve the climate crisis whereas it just gives polluters an excuse not to act."

D.Wang--ThChM