The China Mail - Climate: Could moon dust keep Earth cool?

USD -
AED 3.672499
AFN 65.504736
ALL 82.012423
AMD 377.773158
ANG 1.79008
AOA 917.000047
ARS 1442.262801
AUD 1.431516
AWG 1.8
AZN 1.698448
BAM 1.659595
BBD 2.015639
BDT 122.394949
BGN 1.67937
BHD 0.376973
BIF 2965.596535
BMD 1
BND 1.27457
BOB 6.91481
BRL 5.303402
BSD 1.000776
BTN 90.44239
BWP 13.24927
BYN 2.866659
BYR 19600
BZD 2.012669
CAD 1.36738
CDF 2229.99993
CHF 0.777898
CLF 0.021857
CLP 863.079882
CNY 6.93805
CNH 6.936665
COP 3704.17
CRC 496.14758
CUC 1
CUP 26.5
CVE 93.565043
CZK 20.54795
DJF 178.211857
DKK 6.332197
DOP 63.157627
DZD 129.926302
EGP 46.854801
ERN 15
ETB 155.932472
EUR 0.848035
FJD 2.209501
FKP 0.738005
GBP 0.73584
GEL 2.695038
GGP 0.738005
GHS 10.987836
GIP 0.738005
GMD 73.000256
GNF 8783.310776
GTQ 7.675957
GYD 209.370505
HKD 7.813225
HNL 26.434899
HRK 6.390402
HTG 131.283861
HUF 320.478501
IDR 16876.7
ILS 3.129102
IMP 0.738005
INR 90.66105
IQD 1311.010794
IRR 42125.000158
ISK 122.959832
JEP 0.738005
JMD 156.523658
JOD 0.709008
JPY 157.044949
KES 129.000287
KGS 87.449435
KHR 4038.98126
KMF 418.999668
KPW 900.002243
KRW 1467.470252
KWD 0.307361
KYD 0.833956
KZT 493.576471
LAK 21509.911072
LBP 89638.030929
LKR 309.69554
LRD 186.137286
LSL 16.167606
LTL 2.95274
LVL 0.60489
LYD 6.339495
MAD 9.185352
MDL 17.007501
MGA 4427.737424
MKD 52.293597
MMK 2100.00747
MNT 3580.70414
MOP 8.05317
MRU 39.920067
MUR 46.059462
MVR 15.45012
MWK 1735.286131
MXN 17.347575
MYR 3.947502
MZN 63.749726
NAD 16.167606
NGN 1368.195506
NIO 36.826006
NOK 9.71805
NPR 144.708438
NZD 1.668345
OMR 0.384495
PAB 1.000776
PEN 3.36398
PGK 4.350519
PHP 58.562992
PKR 280.209677
PLN 3.57626
PYG 6608.484622
QAR 3.647395
RON 4.318502
RSD 99.548986
RUB 76.997104
RWF 1460.610278
SAR 3.750238
SBD 8.058149
SCR 13.889902
SDG 601.498432
SEK 9.04498
SGD 1.273275
SHP 0.750259
SLE 24.45004
SLL 20969.499267
SOS 570.904894
SRD 37.869637
STD 20697.981008
STN 20.789492
SVC 8.756194
SYP 11059.574895
SZL 16.159799
THB 31.611501
TJS 9.366941
TMT 3.505
TND 2.899825
TOP 2.40776
TRY 43.615017
TTD 6.776526
TWD 31.678202
TZS 2585.000013
UAH 43.184356
UGX 3572.383187
UYU 38.617377
UZS 12275.134071
VES 377.985125
VND 25950
VUV 119.988021
WST 2.726314
XAF 556.612755
XAG 0.013379
XAU 0.000204
XCD 2.70255
XCG 1.803594
XDR 0.692248
XOF 556.610394
XPF 101.198154
YER 238.400271
ZAR 16.12955
ZMK 9001.195865
ZMW 18.589121
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • CMSC

    0.0300

    23.55

    +0.13%

  • CMSD

    0.0200

    23.89

    +0.08%

  • RBGPF

    0.1000

    82.5

    +0.12%

  • JRI

    -0.1500

    13

    -1.15%

  • AZN

    -0.2900

    187.16

    -0.15%

  • BCC

    -1.0700

    89.16

    -1.2%

  • BCE

    -0.7700

    25.57

    -3.01%

  • RIO

    -5.3600

    91.12

    -5.88%

  • NGG

    -0.9000

    86.89

    -1.04%

  • GSK

    1.9400

    59.17

    +3.28%

  • BTI

    0.3300

    61.96

    +0.53%

  • RYCEF

    -0.2000

    16.42

    -1.22%

  • RELX

    0.3100

    30.09

    +1.03%

  • VOD

    -1.0900

    14.62

    -7.46%

  • BP

    -1.0300

    38.17

    -2.7%

Climate: Could moon dust keep Earth cool?
Climate: Could moon dust keep Earth cool? / Photo: © AFP/File

Climate: Could moon dust keep Earth cool?

Whether out-of-the-box thinking or a sign of desperation, scientists on Wednesday proposed the regular transport of moon dust to a gravity point between Earth and Sun to temper the ravages of global warming.

Text size:

Ideas for filtering solar radiation to keep Earth from overheating have been kicking around for decades, ranging from giant space-based screens to churning out reflective white clouds.

But the persistent failure to draw down planet-warming greenhouse gas emissions has pushed once-fanciful geoengineering schemes toward centre stage in climate policy, investment and research.

Blocking one to two percent of the Sun's rays is all it would take to lower Earth's surface by a degree or two Celsius -- roughly the amount it has warmed over the last century.

The solar radiation technique with the most traction so far is the 24/7 injection of billions of shiny sulphur particles into the upper atmosphere.

So-called stratospheric aerosol injection would be cheap, and scientists know it works because major volcanic eruptions basically do the same thing. When Mount Pinatubo in the Philippines blew its top in 1991, it lowered temperatures in the northern hemisphere by about 0.5C for nearly a year.

But there are serious potential side-effects, including the disruption of rain patterns upon which millions depend for growing food.

However, a new study in the peer-reviewed journal PLOS Climate explores the possibility of using moon dust as a solar shield.

A team of astronomers applied methods used to track planet formation around distant stars -- a messy process that kicks up vast quantities of space dust -- to Earth's moon.

Computer simulations showed that putting lunar dust at a gravitational sweet spot between Earth and Sun "blocked out a lot of sunlight with a little amount of mass", said lead author Ben Bromley, a professor of physics at the University of Utah.

- 'Balancing marbles' -

The scientists tested several scenarios involving different particle properties and quantities in different orbits, looking for the one that would throw the most shade.

Moon dust worked best. The quantities needed, they said, would require the equivalent of a major mining operation on Earth.

The authors stressed that their study was designed to calculate potential impact, not logistical feasibility.

"We aren't experts in climate change or rocket science," said co-author Benjamin Bromley, a professor at the Harvard-Smithsonian Center for Astrophysics.

"We were just exploring different kinds of dust on a variety of orbits to see how effective this approach might be," he added. "We don't want to miss a game changer for such a critical problem."

Experts not involved in the study praised its methodology but doubted whether it would actually work.

"Placing moon dust at the gravity mid-point between Earth and Sun, can indeed reflect heat," said University of Edinburgh professor Stuart Haszeldine.

"But this is like trying to balance marbles on a football -- within a week most dust has spun out of stable orbit."

For Joanna Haigh, an emeritus professor of atmospherics at Imperial College London, the study is a distraction.

The main problem, she said, "is the suggestion that the implementation of such schemes will solve the climate crisis whereas it just gives polluters an excuse not to act."

D.Wang--ThChM