The China Mail - Ostrich and emu ancestor could fly, scientists discover

USD -
AED 3.672497
AFN 65.999471
ALL 81.749912
AMD 377.657389
ANG 1.79008
AOA 916.489445
ARS 1447.774602
AUD 1.433949
AWG 1.80125
AZN 1.703098
BAM 1.656847
BBD 2.015105
BDT 122.260014
BGN 1.67937
BHD 0.377032
BIF 2953.091775
BMD 1
BND 1.272884
BOB 6.913553
BRL 5.239204
BSD 1.000479
BTN 90.561067
BWP 13.175651
BYN 2.857082
BYR 19600
BZD 2.012224
CAD 1.36841
CDF 2224.999659
CHF 0.778355
CLF 0.021805
CLP 860.999957
CNY 6.94215
CNH 6.94197
COP 3642
CRC 496.003592
CUC 1
CUP 26.5
CVE 93.41048
CZK 20.68075
DJF 178.163135
DKK 6.33486
DOP 63.049437
DZD 129.986956
EGP 46.961897
ERN 15
ETB 154.976835
EUR 0.84826
FJD 2.20805
FKP 0.729917
GBP 0.734446
GEL 2.689902
GGP 0.729917
GHS 10.985781
GIP 0.729917
GMD 73.500789
GNF 8780.996111
GTQ 7.67429
GYD 209.32114
HKD 7.80883
HNL 26.428662
HRK 6.385501
HTG 131.143652
HUF 321.991502
IDR 16828.55
ILS 3.10525
IMP 0.729917
INR 90.394901
IQD 1310.5
IRR 42125.000158
ISK 122.830055
JEP 0.729917
JMD 156.862745
JOD 0.708956
JPY 156.932007
KES 129.000202
KGS 87.450061
KHR 4029.999686
KMF 416.999794
KPW 899.945137
KRW 1467.869894
KWD 0.30742
KYD 0.83376
KZT 497.113352
LAK 21520.880015
LBP 86149.999963
LKR 309.665505
LRD 185.999907
LSL 16.060391
LTL 2.95274
LVL 0.60489
LYD 6.323093
MAD 9.174499
MDL 16.928505
MGA 4431.457248
MKD 52.289772
MMK 2099.936125
MNT 3569.846682
MOP 8.051354
MRU 39.72959
MUR 46.069927
MVR 15.459857
MWK 1737.999676
MXN 17.36485
MYR 3.947978
MZN 63.759773
NAD 16.060374
NGN 1371.399239
NIO 36.81834
NOK 9.708245
NPR 144.897432
NZD 1.670075
OMR 0.384506
PAB 1.000479
PEN 3.362498
PGK 4.286719
PHP 58.773502
PKR 279.84277
PLN 3.57756
PYG 6622.13506
QAR 3.64125
RON 4.321597
RSD 99.582996
RUB 76.249364
RWF 1459.958497
SAR 3.750129
SBD 8.064647
SCR 14.106828
SDG 601.502126
SEK 9.00598
SGD 1.27433
SHP 0.750259
SLE 24.549799
SLL 20969.499267
SOS 571.483593
SRD 37.894031
STD 20697.981008
STN 20.755852
SVC 8.7544
SYP 11059.574895
SZL 16.059778
THB 31.827019
TJS 9.349774
TMT 3.505
TND 2.845498
TOP 2.40776
TRY 43.532004
TTD 6.777163
TWD 31.677296
TZS 2584.99965
UAH 43.151654
UGX 3562.246121
UYU 38.562056
UZS 12264.970117
VES 377.98435
VND 25967.5
VUV 119.556789
WST 2.72617
XAF 555.589718
XAG 0.012686
XAU 0.000204
XCD 2.70255
XCG 1.803149
XDR 0.691101
XOF 555.690911
XPF 101.550041
YER 238.324995
ZAR 16.14345
ZMK 9001.198478
ZMW 19.585153
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    4.4200

    86.52

    +5.11%

  • CMSC

    -0.1400

    23.52

    -0.6%

  • AZN

    3.1300

    187.45

    +1.67%

  • RIO

    0.1100

    96.48

    +0.11%

  • BTI

    -0.2400

    61.63

    -0.39%

  • BCE

    0.2400

    26.34

    +0.91%

  • BCC

    5.3000

    90.23

    +5.87%

  • CMSD

    -0.0700

    23.87

    -0.29%

  • RELX

    -0.7300

    29.78

    -2.45%

  • NGG

    1.5600

    87.79

    +1.78%

  • RYCEF

    -0.3100

    16.62

    -1.87%

  • GSK

    3.8900

    57.23

    +6.8%

  • BP

    0.3800

    39.2

    +0.97%

  • JRI

    0.0300

    13.15

    +0.23%

  • VOD

    0.4600

    15.71

    +2.93%

Ostrich and emu ancestor could fly, scientists discover
Ostrich and emu ancestor could fly, scientists discover / Photo: © AFP/File

Ostrich and emu ancestor could fly, scientists discover

How did the ostrich cross the ocean?

Text size:

It may sound like a joke, but scientists have long been puzzled by how the family of birds that includes African ostriches, Australian emus and cassowaries, New Zealand kiwis and South American rheas spread across the world -- given that none of them can fly.

However, a study published Wednesday may have found the answer to this mystery: the family's oldest-known ancestors were able to take wing.

The only currently living member of this bird family -- which is called palaeognaths -- capable of flight is the tinamous in Central and South America. But even then, the shy birds can only fly over short distances when they need to escape danger or clear obstacles.

Given this ineptitude in the air, scientists have struggled to explain how palaeognaths became so far-flung.

Some assumed that the birds' ancestors were split up when the supercontinent Gondwana started breaking up 160 million years ago, creating South America, Africa, Australia, India, New Zealand and Antarctica.

However, genetic research has shown that "the evolutionary splits between palaeognath species happened long after the continents had already separated," lead study author Klara Widrig of the Smithsonian National Museum of Natural History told AFP.

- Wing and a prayer -

Widrig and colleagues analysed the specimen of a lithornithid, the oldest palaeognath group for which fossils have been discovered. They lived during the Paleogene period 66-23 million years ago.

The fossil of the bird Lithornis promiscuus was first found in the US state of Wyoming, but had been sitting in the Smithsonian museum's collection.

"Because bird bones tend to be delicate, they are often crushed during the process of fossilisation, but this one was not," she said.

"Crucially for this study, it retained its original shape," Widrig added. This allowed the researchers to scan the animal's breastbone, which is where the muscles that enable flight would have been attached.

They determined that Lithornis promiscuus was able to fly -- either by continuously beating its wings or alternating between flapping and gliding.

But this discovery prompts another question: why did these birds give up the power of flight?

- Taking to the ground -

"Birds tend to evolve flightlessness when two important conditions are met: they have to be able to obtain all their food on the ground, and there cannot be any predators to threaten them," Widrig explained.

Other research has also recently revealed that lithornithids may have had a bony organ on the tip of their beaks which made them excel at foraging for insects.

But what about the second condition -- a lack of predators?

Widrig suspects that palaeognath ancestors likely started evolving towards flightlessness after dinosaurs went extinct around 65 million years ago.

"With all the major predators gone, ground-feeding birds would have been free to become flightless, which would have saved them a lot of energy," she said.

The small mammals that survived the event that wiped out the dinosaurs -- thought to have been a huge asteroid -- would have taken some time to evolve into predators.

This would have given flightless birds "time to adapt by becoming swift runners" like the emu, ostrich and rhea -- or even "becoming themselves dangerous and intimidating, like the cassowary," she said.

The study was published in the Royal Society's Biology Letters journal.

Z.Ma--ThChM