The China Mail - Cheaper, changing and crucial: the rise of solar power

USD -
AED 3.6725
AFN 66.498985
ALL 83.849893
AMD 382.479814
ANG 1.789982
AOA 916.99985
ARS 1450.743699
AUD 1.542686
AWG 1.805
AZN 1.69797
BAM 1.69722
BBD 2.01352
BDT 122.007836
BGN 1.693755
BHD 0.376999
BIF 2952.5
BMD 1
BND 1.304378
BOB 6.907594
BRL 5.3502
BSD 0.999679
BTN 88.558647
BWP 13.450775
BYN 3.407125
BYR 19600
BZD 2.010578
CAD 1.41157
CDF 2149.999973
CHF 0.806535
CLF 0.024051
CLP 943.494034
CNY 7.11935
CNH 7.12277
COP 3784.2
CRC 502.442792
CUC 1
CUP 26.5
CVE 95.85046
CZK 21.07815
DJF 177.720484
DKK 6.467935
DOP 64.276658
DZD 130.564976
EGP 47.30068
ERN 15
ETB 153.901624
EUR 0.86619
FJD 2.28425
FKP 0.766404
GBP 0.761145
GEL 2.705037
GGP 0.766404
GHS 10.944994
GIP 0.766404
GMD 73.00005
GNF 8690.000203
GTQ 7.6608
GYD 209.15339
HKD 7.775585
HNL 26.350172
HRK 6.525201
HTG 130.827172
HUF 334.478
IDR 16701.1
ILS 3.272635
IMP 0.766404
INR 88.67335
IQD 1309.660176
IRR 42112.500479
ISK 126.620195
JEP 0.766404
JMD 160.35857
JOD 0.709028
JPY 153.022029
KES 129.150141
KGS 87.449874
KHR 4012.669762
KMF 421.000037
KPW 900.033283
KRW 1448.380373
KWD 0.30688
KYD 0.833167
KZT 526.13127
LAK 21717.265947
LBP 89523.367365
LKR 304.861328
LRD 182.946302
LSL 17.373217
LTL 2.95274
LVL 0.60489
LYD 5.466197
MAD 9.311066
MDL 17.114592
MGA 4500.000361
MKD 53.290545
MMK 2099.044592
MNT 3585.031206
MOP 8.005051
MRU 39.793742
MUR 45.949763
MVR 15.405043
MWK 1737.000135
MXN 18.57178
MYR 4.179894
MZN 63.959808
NAD 17.373217
NGN 1438.170034
NIO 36.754964
NOK 10.198475
NPR 141.693568
NZD 1.774198
OMR 0.384494
PAB 0.999779
PEN 3.375927
PGK 4.208502
PHP 58.92977
PKR 282.679805
PLN 3.681165
PYG 7081.988268
QAR 3.643566
RON 4.404602
RSD 101.521003
RUB 81.249968
RWF 1452.596867
SAR 3.750595
SBD 8.230592
SCR 14.436944
SDG 600.486468
SEK 9.57305
SGD 1.304395
SHP 0.750259
SLE 23.220523
SLL 20969.499529
SOS 571.349231
SRD 38.503495
STD 20697.981008
STN 21.260533
SVC 8.747304
SYP 11056.895466
SZL 17.359159
THB 32.402312
TJS 9.227278
TMT 3.5
TND 2.959939
TOP 2.342104
TRY 42.19092
TTD 6.773954
TWD 30.993002
TZS 2459.807003
UAH 42.066455
UGX 3491.096532
UYU 39.813947
UZS 12025.000204
VES 227.27225
VND 26315
VUV 122.169446
WST 2.82328
XAF 569.234174
XAG 0.020761
XAU 0.000251
XCD 2.70255
XCG 1.801686
XDR 0.70875
XOF 569.500034
XPF 103.489719
YER 238.501488
ZAR 17.37665
ZMK 9001.194974
ZMW 22.61803
ZWL 321.999592
  • RBGPF

    0.0000

    76

    0%

  • SCS

    -0.1700

    15.76

    -1.08%

  • RYCEF

    0.0600

    15

    +0.4%

  • NGG

    0.9200

    76.29

    +1.21%

  • CMSD

    0.0000

    24.01

    0%

  • RELX

    -1.1900

    43.39

    -2.74%

  • CMSC

    -0.0500

    23.78

    -0.21%

  • GSK

    0.4100

    47.1

    +0.87%

  • AZN

    2.6200

    83.77

    +3.13%

  • RIO

    0.2100

    69.27

    +0.3%

  • JRI

    -0.0200

    13.75

    -0.15%

  • BCC

    -0.6500

    70.73

    -0.92%

  • VOD

    0.0700

    11.34

    +0.62%

  • BCE

    0.7800

    23.17

    +3.37%

  • BP

    0.1400

    35.82

    +0.39%

  • BTI

    0.3300

    54.21

    +0.61%

Cheaper, changing and crucial: the rise of solar power
Cheaper, changing and crucial: the rise of solar power / Photo: © AFP/File

Cheaper, changing and crucial: the rise of solar power

Generating power from sunlight bouncing off the ground, working at night, even helping to grow strawberries: solar panel technology is evolving fast as costs plummet for a key segment of the world's energy transition.

Text size:

The International Energy Agency says solar will have to scale up significantly this decade to meet the Paris climate target of limiting temperature rises to 1.5 degrees Celsius above pre-industrial levels.

The good news is that costs have fallen dramatically.

In a report on solutions earlier this year, the Intergovernmental Panel on Climate Change said solar unit costs had dropped 85 percent between 2010 and 2019, while wind fell 55 percent.

"There's some claim that it's the cheapest way humans have ever been able to make electricity at scale," said Gregory Nemet, a professor at the University of Wisconsin–Madison and a lead author on that report.

Experts hope the high fossil fuel prices and fears over energy security caused by Russia's invasion of Ukraine will accelerate the uptake of renewables.

Momentum gathered pace on Sunday with the ambitious US climate bill, which earmarks $370 billion in efforts to cut greenhouse gas emissions by 40 percent by 2030.

An analysis by experts at Princeton University estimates the bill could see five times the rate of solar additions in 2025 as there were in 2020.

Nemet said solar alone could plausibly make up half of the world's electricity system by mid-century, although he cautioned against looking for "silver bullets".

"I think there really is big potential," he told AFP.

- Rapid changes -

The "photovoltaic effect" -- the process by which solar cells convert sunlight to electrical energy -- was first discovered in 1839 by the French physicist Edmond Becquerel.

After decades of innovations, silicon-based solar cells started to be developed in the United States in the 1950s, with the world's first solar-powered satellite launched in 1958.

The IPCC said of all energy technologies, small-scale ones like solar and batteries have so far proved quicker to improve and be adopted than bulkier options like nuclear.

Today, almost all of the panels glimmering on rooftops and spreading across vast fields are made in China using silicon semiconductors.

But the technology is changing quickly.

In a recent report, the IEA said these new solar cells have proven to be one-fifth more efficient in converting light to energy than standard modules installed just four or five years ago.

There are also a host of new materials and hybrid cells that experts predict could supercharge efficiency.

These include cheap, efficient and lightweight "thin film" technologies, like those using perovskites that can be printed from inks.

Experts say they raise the prospect of dramatically expanding where solar energy can be harvested -- if they can be made durable enough to withstand a couple of decades of use.

Recent research has raised hopes that it could be possible.

In one study, published in the journal Science in April, scientists added metal-containing materials to perovskite cells, making them more stable with efficiency near traditional silicon models.

Other research mixes materials for different purposes.

One study in Nature used "tandem" models, with perovskite semiconductors to absorb near-infrared light on the solar spectrum, while an organic carbon-based material absorbed ultraviolet and visible parts of the light.

And what happens after sunset?

Researchers from Stanford said this year they had produced a solar cell that could harvest energy overnight, using heat leaking from Earth back into space.

"I think that there's a lot of creativity in this industry," said Ron Schoff, who heads the Electric Power Research Institute's Renewable Energy and Fleet Enabling Technologies research.

- Location, location -

Generating more energy from each panel will become increasingly crucial as solar power is rolled out at greater scale, raising concerns about land use and harm to ecosystems.

Schoff said one efficiency-boosting design that is becoming more popular for large-scale projects is "bifacial" solar.

These double-sided units absorb energy not just directly from the sun's rays, but also from light reflected off the ground beneath.

Other solutions involve using the same space for multiple purposes -- like semi-transparent solar panels used as a protective roof for strawberry plants or other crops.

India pioneered the use of solar panels over canals a decade ago, reducing evaporation as they generate power.

Scientists in California have said that if the drought-prone US state shaded its canals, it could save around 63 billion gallons.

Construction on a pilot project is due to begin this year.

- All shapes, sizes -

Experts say solar will be among a mix of energy options, with different technologies more suitable for different places.

Schoff said ultimately those energy grids with more than 25 percent solar and wind need ways to store energy -- with batteries or large-scale facilities using things like pumped water or compressed air.

Consumers can also play their part, said Nemet, by shifting more of their energy use to daytime periods, or even hosting their own solar networks in an Airbnb-style approach.

He said the modular nature of solar means it can be rolled out in developing countries with sparse access to traditional grids.

"You could have solar on something as small as a watch and something as big as the biggest power plants in the world," he said.

"I think that's what's making people excited about it."

T.Luo--ThChM