The China Mail - Gas flares vastly underperform, causing greater climate impact: study

USD -
AED 3.67302
AFN 68.25057
ALL 83.483156
AMD 381.28666
ANG 1.789699
AOA 917.000079
ARS 1331.517198
AUD 1.533989
AWG 1.8025
AZN 1.701624
BAM 1.678416
BBD 2.011225
BDT 121.225644
BGN 1.67595
BHD 0.377008
BIF 2970.239245
BMD 1
BND 1.281665
BOB 6.898002
BRL 5.460296
BSD 0.996082
BTN 87.455643
BWP 13.436429
BYN 3.278753
BYR 19600
BZD 2.000841
CAD 1.373185
CDF 2890.000319
CHF 0.80513
CLF 0.02484
CLP 974.449633
CNY 7.18315
CNH 7.18171
COP 4044
CRC 504.348796
CUC 1
CUP 26.5
CVE 94.626544
CZK 21.049902
DJF 177.384543
DKK 6.39439
DOP 60.621404
DZD 130.329582
EGP 48.458546
ERN 15
ETB 138.442414
EUR 0.85684
FJD 2.253799
FKP 0.751467
GBP 0.74803
GEL 2.697767
GGP 0.751467
GHS 10.509197
GIP 0.751467
GMD 72.501278
GNF 8640.311728
GTQ 7.643755
GYD 208.398948
HKD 7.849455
HNL 26.182027
HRK 6.455199
HTG 130.732754
HUF 341.080505
IDR 16297.85
ILS 3.43782
IMP 0.751467
INR 87.689003
IQD 1304.93922
IRR 42124.999693
ISK 122.350144
JEP 0.751467
JMD 159.191257
JOD 0.709001
JPY 147.258498
KES 128.901322
KGS 87.449956
KHR 3990.988091
KMF 422.49885
KPW 899.94784
KRW 1382.949742
KWD 0.30545
KYD 0.830112
KZT 535.217311
LAK 21550.46277
LBP 89250.942919
LKR 299.682905
LRD 199.72281
LSL 17.746006
LTL 2.95274
LVL 0.60489
LYD 5.421084
MAD 9.036657
MDL 16.918898
MGA 4406.722934
MKD 52.80344
MMK 2099.311056
MNT 3591.43546
MOP 8.053619
MRU 39.734309
MUR 45.350304
MVR 15.405187
MWK 1727.246592
MXN 18.59456
MYR 4.228506
MZN 63.960054
NAD 17.746006
NGN 1525.150182
NIO 36.657011
NOK 10.16617
NPR 139.928686
NZD 1.679882
OMR 0.384488
PAB 0.996082
PEN 3.542113
PGK 4.136416
PHP 57.210499
PKR 282.843731
PLN 3.660896
PYG 7460.963815
QAR 3.631534
RON 4.347702
RSD 100.350056
RUB 80.000386
RWF 1440.873964
SAR 3.752576
SBD 8.217066
SCR 14.635046
SDG 600.507518
SEK 9.604135
SGD 1.283585
SHP 0.785843
SLE 23.103011
SLL 20969.503947
SOS 569.31256
SRD 37.035999
STD 20697.981008
STN 21.025441
SVC 8.715614
SYP 13001.372255
SZL 17.742745
THB 32.299026
TJS 9.31359
TMT 3.51
TND 2.935899
TOP 2.342099
TRY 40.682075
TTD 6.75297
TWD 29.816023
TZS 2472.503383
UAH 41.441389
UGX 3556.272608
UYU 39.974254
UZS 12476.132039
VES 128.747751
VND 26215
VUV 119.124121
WST 2.771506
XAF 562.925172
XAG 0.026298
XAU 0.000296
XCD 2.70255
XCG 1.795214
XDR 0.700098
XOF 562.925172
XPF 102.345818
YER 240.449806
ZAR 17.74998
ZMK 9001.199098
ZMW 22.935654
ZWL 321.999592
  • SCU

    0.0000

    12.72

    0%

  • CMSC

    -0.1200

    22.95

    -0.52%

  • JRI

    0.0800

    13.34

    +0.6%

  • BCE

    -0.3100

    23.25

    -1.33%

  • RIO

    0.3900

    60.09

    +0.65%

  • GSK

    -0.5700

    36.75

    -1.55%

  • NGG

    0.0200

    72.3

    +0.03%

  • BTI

    0.5600

    56.4

    +0.99%

  • CMSD

    0.0300

    23.54

    +0.13%

  • BCC

    -3.8500

    82.92

    -4.64%

  • SCS

    0.0300

    15.99

    +0.19%

  • RBGPF

    1.0800

    76

    +1.42%

  • RYCEF

    0.1700

    14.5

    +1.17%

  • AZN

    -0.8800

    73.6

    -1.2%

  • VOD

    0.2000

    11.3

    +1.77%

  • BP

    0.2800

    33.88

    +0.83%

  • RELX

    -1.7800

    48.81

    -3.65%

Gas flares vastly underperform, causing greater climate impact: study
Gas flares vastly underperform, causing greater climate impact: study / Photo: © GETTY IMAGES NORTH AMERICA/AFP/File

Gas flares vastly underperform, causing greater climate impact: study

Flaring -- burning off unwanted natural gas from oil and gas wells -- releases five times more of the potent greenhouse gas methane into the atmosphere over the United States than previously assumed, according to a study published Thursday.

Text size:

The result is a far greater impact on climate change, with the warming potential between the stated and actual effectiveness of flaring across the United States equivalent to putting 2.9 million more cars onto the road each year, the paper in Science said.

A team led by Genevieve Plant at the University of Michigan carried out airborne sampling over the Permian Basin and Eagle Ford Shale in Texas, as well as the Bakken Formation that straddles North Dakota and Montana. These together account for 80 percent of US flaring.

"We employed a small airplane equipped with highly sensitive sensors to measure the concentrations of methane and carbon dioxide directly downwind of flare stacks," Plant told AFP.

"Over the course of our airborne survey, we sample around 300 distinct flare stacks throughout the highest-flaring regions in the US."

The fossil fuel industry and US government work on the assumption that flares remain lit and destroy methane, the predominant component of natural gas, with 98 percent efficiency.

But according to the study, a combination of unlit flares and some flares that were burning highly inefficiently meant that on average, flares destroyed just 91.1 percent of methane.

That implies methane emissions from flaring in the United States, which ranks among the top five nations for flaring activity, are five times as high as currently officially reported.

- Health impacts -

Digging deeper into the numbers, the team found that most flares actually operate at 98 percent efficiency.

But a modest number of malfunctioning flares operate at efficiency as low as 60 percent, and 3-5 percent of flares are unlit -- directly venting unburned gas into the atmosphere.

Flaring is an inherently wasteful activity -- as the natural gas associated with oil extraction could be used for productive purposes.

The amount of gas that is currently flared each year – about 144 billion cubic meters – could power the whole of sub-Saharan Africa, according to the World Bank.

Gas is flared for various reasons. Sometimes it is done for safety, since the extraction process deals with high pressures that can cause explosions.

At other times it can be economic -- when, for example, the target is oil and the associated gas isn't considered worth bringing to market.

"From anecdotal conversations with industry experts, one potential reason flares may be unlit is due to high wind events and then the flares remain unlit until noticed by the operator if re-igniting systems are either not installed or not working," said Plant.

The team suggested a number of solutions, key among them: reduce the total volume of flaring activity, increasing flare efficiency, and reducing the number of unlit flares.

Technology solutions can also be deployed, such as re-injecting gas back into oil reservoirs, which is common practice in Alaska.

"Other proposed alternatives to flaring include using the gas to power equipment on-site, as well as storing it, either compressed or liquefied form, for later energy use," said Plant.

In a related commentary, authors Riley Duren and Deborah Gordon said the findings had important health implications for the half million people who live within five kilometers (three miles) of the three basins studied.

"Unlit and partially combusted flares have the potential to expose front-line communities to a cocktail of co-pollutants that present risks of acute and/or chronic health impacts," they said.

Methane is a potent greenhouse gas, with more than 80 times the warming power of carbon dioxide over the first 20 years it enters the atmosphere -- though carbon dioxide has greater staying power.

Because of this, more than 120 countries have signed a Global Methane Pledge to cut emissions by 30 percent by 2030.

B.Carter--ThChM