The China Mail - Sustainability at centre of British polar science strategy

USD -
AED 3.672502
AFN 66.272138
ALL 83.49892
AMD 382.462203
ANG 1.789982
AOA 917.000222
ARS 1406.911304
AUD 1.533966
AWG 1.805
AZN 1.701199
BAM 1.689676
BBD 2.011145
BDT 121.87473
BGN 1.689676
BHD 0.373737
BIF 2940.647948
BMD 1
BND 1.300389
BOB 6.909719
BRL 5.334399
BSD 0.998531
BTN 88.502808
BWP 13.406479
BYN 3.40311
BYR 19600
BZD 2.008207
CAD 1.40302
CDF 2149.999776
CHF 0.806225
CLF 0.024015
CLP 942.090228
CNY 7.11935
CNH 7.122165
COP 3780.3
CRC 501.339093
CUC 1
CUP 26.5
CVE 95.261339
CZK 21.03101
DJF 177.814255
DKK 6.46169
DOP 64.155508
DZD 129.316631
EGP 47.012697
ERN 15
ETB 154.143499
EUR 0.86534
FJD 2.28425
FKP 0.760233
GBP 0.760575
GEL 2.705011
GGP 0.760233
GHS 10.919222
GIP 0.760233
GMD 73.00004
GNF 8667.818575
GTQ 7.651836
GYD 208.907127
HKD 7.77563
HNL 26.25486
HRK 6.51898
HTG 132.907127
HUF 332.810054
IDR 16669
ILS 3.24347
IMP 0.760233
INR 88.63935
IQD 1308.077754
IRR 42099.999599
ISK 126.703233
JEP 0.760233
JMD 160.267819
JOD 0.708964
JPY 153.946992
KES 129.209843
KGS 87.450129
KHR 4019.006479
KMF 421.000235
KPW 900.018268
KRW 1456.145008
KWD 0.306901
KYD 0.832138
KZT 524.198704
LAK 21680.345572
LBP 89418.488121
LKR 304.354212
LRD 182.332613
LSL 17.296674
LTL 2.95274
LVL 0.60489
LYD 5.452268
MAD 9.256069
MDL 17.024622
MGA 4488.12095
MKD 53.153348
MMK 2099.87471
MNT 3580.787673
MOP 7.998963
MRU 39.553348
MUR 45.90988
MVR 15.405027
MWK 1731.490281
MXN 18.43226
MYR 4.166996
MZN 63.950265
NAD 17.296674
NGN 1435.23005
NIO 36.742981
NOK 10.152799
NPR 141.60432
NZD 1.775568
OMR 0.38114
PAB 0.998618
PEN 3.369762
PGK 4.215983
PHP 58.947013
PKR 282.349719
PLN 3.670117
PYG 7065.226782
QAR 3.639309
RON 4.401198
RSD 101.226782
RUB 81.085876
RWF 1450.885529
SAR 3.750401
SBD 8.230592
SCR 13.701253
SDG 600.496076
SEK 9.533875
SGD 1.302655
SHP 0.750259
SLE 23.195989
SLL 20969.499529
SOS 570.62635
SRD 38.59899
STD 20697.981008
STN 21.166307
SVC 8.736933
SYP 11056.858374
SZL 17.302808
THB 32.350499
TJS 9.216415
TMT 3.51
TND 2.95162
TOP 2.342104
TRY 42.23858
TTD 6.768898
TWD 31.015797
TZS 2456.415026
UAH 41.870929
UGX 3494.600432
UYU 39.766739
UZS 12042.332613
VES 228.194001
VND 26306
VUV 122.303025
WST 2.820887
XAF 566.701512
XAG 0.020379
XAU 0.000247
XCD 2.70255
XCG 1.799568
XDR 0.704795
XOF 566.701512
XPF 103.032397
YER 238.501498
ZAR 17.28389
ZMK 9001.203851
ZMW 22.591793
ZWL 321.999592
  • CMSD

    0.0900

    24.1

    +0.37%

  • NGG

    1.4600

    77.75

    +1.88%

  • RELX

    -1.1200

    42.27

    -2.65%

  • VOD

    0.2400

    11.58

    +2.07%

  • BCC

    -0.0900

    70.64

    -0.13%

  • RIO

    0.0600

    69.33

    +0.09%

  • SCS

    0.0000

    15.76

    0%

  • RYCEF

    0.0800

    14.88

    +0.54%

  • RBGPF

    -0.7800

    75.22

    -1.04%

  • CMSC

    0.0700

    23.85

    +0.29%

  • JRI

    -0.0100

    13.74

    -0.07%

  • AZN

    0.8100

    84.58

    +0.96%

  • GSK

    -0.4700

    46.63

    -1.01%

  • BTI

    0.3800

    54.59

    +0.7%

  • BCE

    0.0200

    23.19

    +0.09%

  • BP

    0.7600

    36.58

    +2.08%

Sustainability at centre of British polar science strategy
Sustainability at centre of British polar science strategy / Photo: © AFP

Sustainability at centre of British polar science strategy

With research stations shifting to renewable energy and artificial intelligence mapping out fuel-efficient marine routes, the British Antarctic Survey is putting sustainability at the heart of its new 10-year plan.

Text size:

"The main target for our strategy is really focused on climate change because the polar regions are the regions on Earth which are changing most drastically," BAS director Jane Francis said, adding that these changes are "affecting the whole planet".

"What we're trying to do is plan the future of our science more now than we used to, because I think it's really so urgent that we can understand how our climate is changing. We need to support the relevant people in making good decisions about renewable energy, about how to save carbon, and how to live in better balance with our planet," she told AFP.

At the BAS headquarters in Cambridge, eastern England, AFP saw some of the cutting-edge technology used by scientists studying the polar regions.

Autonomous underwater vehicles are used to collect data from deep within the icy waters of the Southern Ocean, which encircles the Antarctic and acts as a carbon sink, absorbing heat and carbon from the atmosphere.

From the sky, drones and satellite technology help monitor and count animal populations in remote or inaccessible parts of the polar regions.

- Ice core study -

To gather information about atmospheric conditions in the past, scientists are drilling into ice sheets and glaciers to retrieve ice cores, some containing ice that is hundreds of thousands of years old.

The ice is cut inside a special cold room at the BAS labs where the temperature is kept at -25 degrees Celsius (-13 degrees Fahrenheit).

The air bubbles trapped inside are extracted to measure the concentration of greenhouse gases, such as carbon dioxide and methane.

In the field, the BAS currently operates five research stations in the Antarctic, one of them only during the southern hemisphere summer.

The stations are serviced by a fleet of vehicles, ranging from snowmobiles to Sno-Cats and tractors, that make their way through the workshops at BAS headquarters before being deployed.

The kit is modified to ensure it's "fit for purpose when it lands on the ice", for example by installing pre-heating systems that will help the engines start in freezing temperatures, BAS head of vehicles engineering Ben Norrish said.

Some snowmobiles are equipped with vehicle-tracking devices that have a distress button to request assistance from the station but also keep a record of refuelling stops and other activity while out in the field.

It gives BAS "some kind of carbon accounting to see where we've gone during any given season," Norrish added.

- Net-zero targets -

Reducing carbon emissions is part of the BAS's wider sustainability strategy with the aim to be fully decarbonised across its operations by 2040, said Net Zero transition lead Nopi Exizidou.

"For our research stations, we are investing a lot in renewable energy technology," Exizidou said, adding that BAS aims to decarbonise its polar stations within the next seven years.

The Bird Island station, off the northwest tip of South Georgia, west of the Falklands, is using a solar energy system and battery storage that is expected to reduce fuel use by 50 percent.

King Edward Point station, midway on South Georgia, has a hydropower plant, which meets 80 percent of energy demand in heating and electricity.

At Rothera, the largest British Antarctic research station located on Adelaide Island off the west coast of Antarctica, the new two-storey energy-efficient Discovery Building is set to replace several old buildings.

BAS also has a team of engineers developing an artificial intelligence and machine learning toolkit that will help plan marine routes and run research ships, such as the £200 million RRS Sir David Attenborough, more efficiently.

"They are developing tools that will sit alongside the master of the ship and will help him take more informed decisions on how to go from A to B," said Exizidou.

"We are developing, as we say, the Google maps of the Southern Ocean."

BAS director Francis said the changing technology that researchers will be using in the coming years is "really revolutionary now".

"We don't need to take the ship so far, we don't need to take the aircraft using fuel, we can send out our drones, we can send out our marine robots.

"And it means that we can collect data, so much more data, faster and do much better science."

X.Gu--ThChM