The China Mail - Mysterious antimatter observed falling down for first time

USD -
AED 3.673042
AFN 65.503991
ALL 82.250403
AMD 381.770403
ANG 1.790403
AOA 917.000367
ARS 1440.198104
AUD 1.502404
AWG 1.8
AZN 1.70397
BAM 1.668223
BBD 2.014603
BDT 122.238002
BGN 1.66581
BHD 0.375335
BIF 2965
BMD 1
BND 1.291806
BOB 6.911523
BRL 5.419704
BSD 1.000264
BTN 90.4571
BWP 13.253269
BYN 2.948763
BYR 19600
BZD 2.011703
CAD 1.37805
CDF 2240.000362
CHF 0.795992
CLF 0.023203
CLP 910.250396
CNY 7.054504
CNH 7.05355
COP 3803.5
CRC 500.345448
CUC 1
CUP 26.5
CVE 94.27504
CZK 20.669104
DJF 177.720393
DKK 6.361804
DOP 63.850393
DZD 129.69404
EGP 47.313439
ERN 15
ETB 155.22504
EUR 0.851404
FJD 2.26525
FKP 0.744826
GBP 0.747831
GEL 2.703861
GGP 0.744826
GHS 11.48504
GIP 0.744826
GMD 73.000355
GNF 8691.000355
GTQ 7.661306
GYD 209.264835
HKD 7.77985
HNL 26.203838
HRK 6.417704
HTG 131.108249
HUF 327.990388
IDR 16633.75
ILS 3.222795
IMP 0.744826
INR 90.552404
IQD 1310
IRR 42122.503816
ISK 126.403814
JEP 0.744826
JMD 160.152168
JOD 0.70904
JPY 155.75604
KES 128.903801
KGS 87.450384
KHR 4006.00035
KMF 419.503794
KPW 899.99623
KRW 1474.980383
KWD 0.306704
KYD 0.833596
KZT 521.66941
LAK 21680.000349
LBP 89550.000349
LKR 309.078037
LRD 177.025039
LSL 16.880381
LTL 2.95274
LVL 0.60489
LYD 5.420381
MAD 9.19125
MDL 16.909049
MGA 4510.000347
MKD 52.398791
MMK 2100.268185
MNT 3547.376613
MOP 8.020795
MRU 39.740379
MUR 45.903741
MVR 15.403739
MWK 1736.503736
MXN 18.014404
MYR 4.097304
MZN 63.910377
NAD 16.880377
NGN 1452.570377
NIO 36.775039
NOK 10.137304
NPR 144.731702
NZD 1.72295
OMR 0.382805
PAB 1.000264
PEN 3.603708
PGK 4.259204
PHP 59.115038
PKR 280.225038
PLN 3.59745
PYG 6718.782652
QAR 3.641104
RON 4.335904
RSD 99.975303
RUB 79.673577
RWF 1451
SAR 3.75231
SBD 8.176752
SCR 14.958069
SDG 601.503676
SEK 9.269904
SGD 1.292038
SHP 0.750259
SLE 24.125038
SLL 20969.503664
SOS 571.503662
SRD 38.548038
STD 20697.981008
STN 21.25
SVC 8.752207
SYP 11058.380716
SZL 16.880369
THB 31.520369
TJS 9.192334
TMT 3.51
TND 2.916038
TOP 2.40776
TRY 42.696104
TTD 6.787844
TWD 31.335104
TZS 2470.000335
UAH 42.263496
UGX 3555.146134
UYU 39.25315
UZS 12002.503617
VES 267.43975
VND 26306
VUV 121.486164
WST 2.783946
XAF 559.50409
XAG 0.016138
XAU 0.000232
XCD 2.70255
XCG 1.802728
XDR 0.695185
XOF 558.000332
XPF 102.075037
YER 238.503589
ZAR 16.875405
ZMK 9001.203584
ZMW 23.081057
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    81.17

    0%

  • JRI

    -0.0200

    13.7

    -0.15%

  • BCC

    0.2500

    76.51

    +0.33%

  • CMSD

    -0.1500

    23.25

    -0.65%

  • NGG

    0.2400

    74.93

    +0.32%

  • GSK

    -0.0700

    48.81

    -0.14%

  • RYCEF

    -0.2500

    14.6

    -1.71%

  • RIO

    -1.0800

    75.66

    -1.43%

  • CMSC

    -0.1300

    23.3

    -0.56%

  • RELX

    0.1000

    40.38

    +0.25%

  • BCE

    0.3100

    23.71

    +1.31%

  • VOD

    0.0500

    12.59

    +0.4%

  • BTI

    -1.2700

    57.1

    -2.22%

  • AZN

    -0.4600

    89.83

    -0.51%

  • BP

    -0.2700

    35.26

    -0.77%

Mysterious antimatter observed falling down for first time
Mysterious antimatter observed falling down for first time / Photo: © CERN/AFP

Mysterious antimatter observed falling down for first time

For the first time, scientists have observed antimatter particles -- the mysterious twins of the visible matter all around us -- falling downwards due to the effect of gravity, Europe's physics lab CERN announced on Wednesday.

Text size:

The experiment was hailed as "huge milestone", though most physicists anticipated the result, and it had been predicted by Einstein's 1915 theory of relativity.

It definitively rules out that gravity repels antimatter upwards -- a finding that would have upended our fundamental understanding of the universe.

Around 13.8 billion years ago, the Big Bang is believed to have produced an equal amount of matter -- what everything you can see is made out of -- and antimatter, its equal yet opposite counterpart.

However there is virtually no antimatter in the universe, which prompted one of the greatest mysteries of physics: what happened to all the antimatter?

"Half the universe is missing," said Jeffrey Hangst, a member of CERN's ALPHA collaboration in Geneva which conducted the new experiment.

"In principle, we could build a universe -- everything that we know about -- with only antimatter, and it would work in exactly the same way," he told AFP.

Physicists believe that matter and antimatter did meet and almost entirely destroyed each other after the Big Bang.

Yet matter now makes up nearly five percent of the universe -- the rest is even less understood dark matter and dark energy -- while antimatter vanished.

- Newton's apple flying up? -

One of the key outstanding questions about antimatter was whether gravity caused it to fall in the same way as normal matter.

While most physicists believed that it did, a few had speculated otherwise.

A falling apple famously inspired Isaac Newton's work on gravity -- but if that apple was made of antimatter, would it have shot up into the sky?

And if gravity did in fact repel antimatter, it could have meant that impossibilities such as a perpetual motion machine were possible.

"So why not drop some and see what happens?" Hangst said.

He compared the experiment to Galileo's famous -- though likely apocryphal -- 16th-century demonstration that two balls of different mass dropped from the Leaning Tower of Pisa would fall at the same rate.

But this experiment -- the result of 30 years of work on antimatter at CERN -- was "a little bit more involved" than Galileo's, Hangst said.

One problem was that antimatter barely exists outside of rare, short-lived particles in outer space.

However in 1996, CERN scientists produced the first atoms of antimatter -- antihydrogen.

Another challenge was that, because matter and antimatter have an opposite electrical charge, the moment they meet they destroy each other in a violent flash of energy scientists call annihilation.

- A magnetic trap -

To study gravity's effect on antimatter, the ALPHA team constructed a 25-centimetre-long (10-inch) bottle placed on its end, with magnets at the top and bottom.

Late last year, the scientists placed around 100 very cold antihydrogen atoms into this "magnetic trap" called ALPHA-g.

As they turned down the strength of both magnets, the antihydrogen particles -- which were bouncing around at 100 metres a second -- were able to escape out either end of the bottle.

The scientists then simply counted how much antimatter was annihilated at each end of the bottle.

Around 80 percent of the antihydrogen went out of the bottom, which is a similar rate to how regular bouncing hydrogen atoms would behave if they were in the bottle.

This result, published in the journal Nature, shows that gravity causes antimatter to fall downwards, as predicted by Einstein's 1915 theory of relativity.

In more than a dozen experiments, the CERN scientists varied the strength of the magnets, observing gravity's effect on antimatter at different rates.

While the experiment rules out that gravity makes antihydrogen go upwards, Hangst emphasised it did not prove that antimatter behaves in exactly the same way as normal matter.

"That's our next task," he said.

Marco Gersabeck, a physicist who works at CERN but was not involved in the ALPHA research, said it was "a huge milestone".

But it marks "only the start of an era" of more precise measurements of gravity's effect on antimatter, he told AFP.

Other attempts to better understand antimatter include using CERN's Large Hadron Collider to investigate strange particles called beauty quarks.

And there is an experiment onboard the International Space Station trying to catch antimatter in cosmic rays.

But for now, exactly why the universe is awash with matter but devoid of antimatter "remains a mystery," said physicist Harry Cliff.

Since both should have annihilated each other completely in the early universe, "the fact that we exist suggests there is something we don't understand" going on, he added.

G.Tsang--ThChM