The China Mail - 'Dark oxygen': a deep-sea discovery that has split scientists

USD -
AED 3.672504
AFN 67.701997
ALL 84.120616
AMD 376.86036
ANG 1.789699
AOA 917.000367
ARS 1354.222596
AUD 1.546791
AWG 1.8025
AZN 1.70397
BAM 1.687416
BBD 1.988007
BDT 120.374445
BGN 1.68952
BHD 0.371166
BIF 2935.507528
BMD 1
BND 1.278461
BOB 6.803848
BRL 5.538804
BSD 0.984686
BTN 86.116216
BWP 13.508477
BYN 3.222208
BYR 19600
BZD 1.977827
CAD 1.37995
CDF 2890.000362
CHF 0.803795
CLF 0.024709
CLP 958.992278
CNY 7.211804
CNH 7.19286
COP 4123.376903
CRC 497.476382
CUC 1
CUP 26.5
CVE 95.133946
CZK 21.201404
DJF 175.333247
DKK 6.439804
DOP 59.842112
DZD 130.120357
EGP 48.338726
ERN 15
ETB 135.820974
EUR 0.86255
FJD 2.261504
FKP 0.754031
GBP 0.752899
GEL 2.703861
GGP 0.754031
GHS 10.338639
GIP 0.754031
GMD 72.503851
GNF 8539.752383
GTQ 7.557051
GYD 205.99629
HKD 7.84915
HNL 25.874639
HRK 6.502404
HTG 128.898667
HUF 344.13504
IDR 16367.95
ILS 3.41469
IMP 0.754031
INR 87.167904
IQD 1289.849446
IRR 42112.503816
ISK 123.430386
JEP 0.754031
JMD 157.939692
JOD 0.70904
JPY 147.390385
KES 127.207627
KGS 87.450384
KHR 3945.472585
KMF 427.503794
KPW 899.997983
KRW 1389.030383
KWD 0.30527
KYD 0.8205
KZT 534.360036
LAK 21292.437772
LBP 88226.909969
LKR 296.665373
LRD 197.411673
LSL 18.03615
LTL 2.95274
LVL 0.60489
LYD 5.379406
MAD 9.016608
MDL 16.955265
MGA 4469.177344
MKD 53.112463
MMK 2098.596987
MNT 3590.521894
MOP 7.960657
MRU 39.275269
MUR 46.750378
MVR 15.403739
MWK 1707.346534
MXN 18.858904
MYR 4.277504
MZN 63.960377
NAD 18.03615
NGN 1533.980377
NIO 36.236573
NOK 10.23875
NPR 137.786118
NZD 1.691189
OMR 0.378586
PAB 0.984599
PEN 3.537207
PGK 4.147362
PHP 57.766038
PKR 279.383202
PLN 3.686327
PYG 7375.005392
QAR 3.580087
RON 4.380304
RSD 101.065528
RUB 79.88758
RWF 1422.285492
SAR 3.750991
SBD 8.264604
SCR 14.458134
SDG 600.503676
SEK 9.65361
SGD 1.290371
SHP 0.785843
SLE 23.000338
SLL 20969.503947
SOS 562.702213
SRD 36.84037
STD 20697.981008
STN 21.138001
SVC 8.615677
SYP 13001.722914
SZL 18.031146
THB 32.475038
TJS 9.289763
TMT 3.51
TND 2.92895
TOP 2.342104
TRY 40.620504
TTD 6.673569
TWD 29.709038
TZS 2491.091842
UAH 41.159484
UGX 3529.614771
UYU 39.558259
UZS 12497.303826
VES 123.49336
VND 26220
VUV 120.138031
WST 2.775456
XAF 565.943661
XAG 0.027001
XAU 0.000297
XCD 2.70255
XCG 1.774557
XDR 0.703852
XOF 565.943661
XPF 102.894612
YER 240.603589
ZAR 18.15613
ZMK 9001.203584
ZMW 22.522756
ZWL 321.999592
  • SCU

    0.0000

    12.72

    0%

  • CMSC

    0.0200

    22.87

    +0.09%

  • CMSD

    0.0800

    23.35

    +0.34%

  • RBGPF

    0.0000

    74.94

    0%

  • SCS

    -0.1500

    10.18

    -1.47%

  • BCC

    -0.4600

    83.35

    -0.55%

  • JRI

    -0.0300

    13.1

    -0.23%

  • NGG

    1.4300

    71.82

    +1.99%

  • GSK

    0.4100

    37.56

    +1.09%

  • BTI

    0.6700

    54.35

    +1.23%

  • RIO

    -0.1200

    59.65

    -0.2%

  • AZN

    0.8600

    73.95

    +1.16%

  • RELX

    -0.3000

    51.59

    -0.58%

  • BCE

    0.2400

    23.57

    +1.02%

  • RYCEF

    0.0100

    14.19

    +0.07%

  • VOD

    0.1500

    10.96

    +1.37%

  • BP

    -0.4000

    31.75

    -1.26%

'Dark oxygen': a deep-sea discovery that has split scientists
'Dark oxygen': a deep-sea discovery that has split scientists / Photo: © National Oceanography Centre / Smartex project (NERC)/AFP/File

'Dark oxygen': a deep-sea discovery that has split scientists

Could lumpy metallic rocks in the deepest, darkest reaches of the ocean be making oxygen in the absence of sunlight?

Text size:

Some scientists think so, but others have challenged the claim that so-called "dark oxygen" is being produced in the lightless abyss of the seabed.

The discovery -- detailed last July in the journal Nature Geoscience -- called into question long-held assumptions about the origins of life on Earth, and sparked intense scientific debate.

The findings were also consequential for mining companies eager to extract the precious metals contained within these polymetallic nodules.

Researchers said that potato-sized nodules could be producing enough electrical current to split seawater into hydrogen and oxygen, a process known as electrolysis.

This cast doubt on the long-established view that life was made possible when organisms started producing oxygen via photosynthesis, which requires sunlight, about 2.7 billion years ago.

"Deep-sea discovery calls into question the origins of life," the Scottish Association for Marine Science said in a press release to accompany the publication of the research.

- Delicate ecosystem -

Environmentalists said the presence of dark oxygen showed just how little is known about life at these extreme depths, and supported their case that deep-sea mining posed unacceptable ecological risks.

"Greenpeace has long campaigned to stop deep sea mining from beginning in the Pacific due to the damage it could do to delicate, deep sea ecosystems," the environmental organisation said.

"This incredible discovery underlines the urgency of that call".

The discovery was made in the Clarion-Clipperton Zone, a vast underwater region of the Pacific Ocean between Mexico and Hawaii of growing interest to mining companies.

Scattered on the seafloor four kilometres (2.5 miles) beneath the surface, polymetallic nodules contain manganese, nickel and cobalt, metals used in electric car batteries and other low-carbon technologies.

The research that gave rise to the dark oxygen discovery was partly funded by a Canadian deep-sea mining business, The Metals Company, that wanted to assess the ecological impact of such exploration.

It has sharply criticised the study by marine ecologist Andrew Sweetman and his team as plagued by "methodological flaws".

Michael Clarke, environmental manager at The Metals Company, told AFP that the findings "are more logically attributable to poor scientific technique and shoddy science than a never before observed phenomenon."

- Scientific doubts -

Sweetman's findings proved explosive, with many in the scientific community expressing reservations or rejecting the conclusions.

Since July, five academic research papers refuting Sweetman's findings have been submitted for review and publication.

"He did not present clear proof for his observations and hypothesis," said Matthias Haeckel, a biogeochemist at the GEOMAR Helmholtz Centre for Ocean Research in Kiel, Germany.

"Many questions remain after the publication. So, now the scientific community needs to conduct similar experiments etc, and either prove or disprove it."

Olivier Rouxel, a geochemistry researcher at Ifremer, the French national institute for ocean science and technology, told AFP there was "absolutely no consensus on these results".

"Deep-sea sampling is always a challenge," he said, adding it was possible that the oxygen detected was "trapped air bubbles" in the measuring instruments.

He was also sceptical about deep-sea nodules, some tens of millions of years old, still producing enough electrical current when "batteries run out quickly".

"How is it possible to maintain the capacity to generate electrical current in a nodule that is itself extremely slow to form?" he asked.

When contacted by AFP, Sweetman indicated that he was preparing a formal response.

"These types of back and forth are very common with scientific articles and it moves the subject matter forward," he said.

Y.Parker--ThChM