The China Mail - What happens to the human body in deep space?

USD -
AED 3.6725
AFN 66.498985
ALL 83.849893
AMD 382.479814
ANG 1.789982
AOA 916.99985
ARS 1450.743699
AUD 1.542686
AWG 1.805
AZN 1.69797
BAM 1.69722
BBD 2.01352
BDT 122.007836
BGN 1.693755
BHD 0.376999
BIF 2952.5
BMD 1
BND 1.304378
BOB 6.907594
BRL 5.3502
BSD 0.999679
BTN 88.558647
BWP 13.450775
BYN 3.407125
BYR 19600
BZD 2.010578
CAD 1.41157
CDF 2149.999973
CHF 0.806535
CLF 0.024051
CLP 943.494034
CNY 7.11935
CNH 7.12277
COP 3784.2
CRC 502.442792
CUC 1
CUP 26.5
CVE 95.85046
CZK 21.07815
DJF 177.720484
DKK 6.467935
DOP 64.276658
DZD 130.564976
EGP 47.30068
ERN 15
ETB 153.901624
EUR 0.86619
FJD 2.28425
FKP 0.766404
GBP 0.761145
GEL 2.705037
GGP 0.766404
GHS 10.944994
GIP 0.766404
GMD 73.00005
GNF 8690.000203
GTQ 7.6608
GYD 209.15339
HKD 7.775585
HNL 26.350172
HRK 6.525201
HTG 130.827172
HUF 334.478
IDR 16701.1
ILS 3.272635
IMP 0.766404
INR 88.67335
IQD 1309.660176
IRR 42112.500479
ISK 126.620195
JEP 0.766404
JMD 160.35857
JOD 0.709028
JPY 153.022029
KES 129.150141
KGS 87.449874
KHR 4012.669762
KMF 421.000037
KPW 900.033283
KRW 1448.380373
KWD 0.30688
KYD 0.833167
KZT 526.13127
LAK 21717.265947
LBP 89523.367365
LKR 304.861328
LRD 182.946302
LSL 17.373217
LTL 2.95274
LVL 0.60489
LYD 5.466197
MAD 9.311066
MDL 17.114592
MGA 4500.000361
MKD 53.290545
MMK 2099.044592
MNT 3585.031206
MOP 8.005051
MRU 39.793742
MUR 45.949763
MVR 15.405043
MWK 1737.000135
MXN 18.57178
MYR 4.179894
MZN 63.959808
NAD 17.373217
NGN 1438.170034
NIO 36.754964
NOK 10.198475
NPR 141.693568
NZD 1.774198
OMR 0.384494
PAB 0.999779
PEN 3.375927
PGK 4.208502
PHP 58.92977
PKR 282.679805
PLN 3.681165
PYG 7081.988268
QAR 3.643566
RON 4.404602
RSD 101.521003
RUB 81.249968
RWF 1452.596867
SAR 3.750595
SBD 8.230592
SCR 14.436944
SDG 600.486468
SEK 9.57305
SGD 1.304395
SHP 0.750259
SLE 23.220523
SLL 20969.499529
SOS 571.349231
SRD 38.503495
STD 20697.981008
STN 21.260533
SVC 8.747304
SYP 11056.895466
SZL 17.359159
THB 32.402312
TJS 9.227278
TMT 3.5
TND 2.959939
TOP 2.342104
TRY 42.19092
TTD 6.773954
TWD 30.993002
TZS 2459.807003
UAH 42.066455
UGX 3491.096532
UYU 39.813947
UZS 12025.000204
VES 227.27225
VND 26315
VUV 122.169446
WST 2.82328
XAF 569.234174
XAG 0.020761
XAU 0.000251
XCD 2.70255
XCG 1.801686
XDR 0.70875
XOF 569.500034
XPF 103.489719
YER 238.501488
ZAR 17.37665
ZMK 9001.194974
ZMW 22.61803
ZWL 321.999592
  • RBGPF

    0.0000

    76

    0%

  • BCC

    -0.6500

    70.73

    -0.92%

  • SCS

    -0.1700

    15.76

    -1.08%

  • RYCEF

    0.0600

    15

    +0.4%

  • CMSC

    -0.0500

    23.78

    -0.21%

  • AZN

    2.6200

    83.77

    +3.13%

  • NGG

    0.9200

    76.29

    +1.21%

  • RIO

    0.2100

    69.27

    +0.3%

  • BTI

    0.3300

    54.21

    +0.61%

  • GSK

    0.4100

    47.1

    +0.87%

  • RELX

    -1.1900

    43.39

    -2.74%

  • JRI

    -0.0200

    13.75

    -0.15%

  • CMSD

    0.0000

    24.01

    0%

  • BCE

    0.7800

    23.17

    +3.37%

  • VOD

    0.0700

    11.34

    +0.62%

  • BP

    0.1400

    35.82

    +0.39%

What happens to the human body in deep space?
What happens to the human body in deep space? / Photo: © NASA/AFP/File

What happens to the human body in deep space?

Bone and muscle deterioration, radiation exposure, vision impairment -- these are just a few of the challenges space travelers face on long-duration missions, even before considering the psychological toll of isolation.

Text size:

As US astronauts Butch Wilmore and Suni Williams prepare to return home after nine months aboard the International Space Station (ISS), some of the health risks they've faced are well-documented and managed, while others remain a mystery.

These dangers will only grow as humanity pushes deeper into the solar system, including to Mars, demanding innovative solutions to safeguard the future of space exploration.

- Exercise key -

Despite the attention their mission has received, Wilmore and Williams' nine-month stay is "par for the course," said Rihana Bokhari, an assistant professor at the Center for Space Medicine at Baylor College.

ISS missions typically last six months, but some astronauts stay up to a year, and researchers are confident in their ability to maintain astronaut health for that duration.

Most people know that lifting weights builds muscle and strengthens bones, but even basic movement on Earth resists gravity, an element missing in orbit.

To counteract this, astronauts use three exercise machines on the ISS, including a 2009-installed resistance device that simulates free weights using vacuum tubes and flywheel cables.

A two-hour daily workout keeps them in shape. "The best results that we have to show that we're being very effective is that we don't really have a fracture problem in astronauts when they return to the ground," though bone loss is still detectable on scans, Bokhari told AFP.

Balance disruption is another issue, added Emmanuel Urquieta, vice chair of Aerospace Medicine at the University of Central Florida.

"This happens to every single astronaut, even those who go into space just for a few days," he told AFP, as they work to rebuild trust in their inner ear.

Astronauts must retrain their bodies during NASA's 45-day post-mission rehabilitation program.

Another challenge is "fluid shift" -- the redistribution of bodily fluids toward the head in microgravity. This can increase calcium levels in urine, raising the risk of kidney stones.

Fluid shifts might also contribute to increased intracranial pressure, altering the shape of the eyeball and causing spaceflight-associated neuro-ocular syndrome (SANS), causing mild-to-moderate vision impairment. Another theory suggests raised carbon dioxide levels are the cause.

But in at least one case, the effects have been beneficial. "I had a pretty severe case of SANS," NASA astronaut Jessica Meir said before the latest launch.

"When I launched, I wore glasses and contacts, but due to globe flattening, I now have 20/15 vision -- most expensive corrective surgery possible. Thank you, taxpayers."

- Managing radiation -

Radiation levels aboard the ISS are higher than on the ground, as it passes through through the Van Allen radiation belt, but Earth's magnetic field still provides significant protection.

The shielding is crucial, as NASA aims to limit astronauts' increased lifetime cancer risk to within three percent.

However, missions to the Moon and Mars will give astronauts far greater exposure, explained astrophysicist Siegfried Eggl.

Future space probes could provide some warning time for high-radiation events, such coronal mass ejections -- plasma clouds from the Sun -- but cosmic radiation remains unpredictable.

"Shielding is best done with heavy materials like lead or water, but you need vast quantities of it," said Eggl, of University of Illinois Urbana-Champaign.

Artificial gravity, created by rotating spacecraft frames, could help astronauts stay functional upon arrival after a nine-month journey to Mars.

Alternatively, a spacecraft could use powerful acceleration and deceleration that matches the force of Earth's gravity.

That approach would be speedier -- reducing radiation exposure risks -- but requires nuclear propulsion technologies that don't yet exist.

Preventing infighting among teams will be critical, said Joseph Keebler, a psychologist at Embry-Riddle Aeronautical University.

"Imagine being stuck in a van with anybody for three years: these vessels aren't that big, there's no privacy, there's no backyard to go to," he said.

"I really commend astronauts that commit to this. It's an unfathomable job."

D.Peng--ThChM