The China Mail - Physicists still divided about quantum world, 100 years on

USD -
AED 3.672498
AFN 66.000229
ALL 83.900451
AMD 382.570291
ANG 1.789982
AOA 917.000333
ARS 1450.749912
AUD 1.535886
AWG 1.8025
AZN 1.699023
BAM 1.701894
BBD 2.013462
BDT 121.860805
BGN 1.699695
BHD 0.376993
BIF 2951
BMD 1
BND 1.306514
BOB 6.907654
BRL 5.361199
BSD 0.999682
BTN 88.718716
BWP 13.495075
BYN 3.407518
BYR 19600
BZD 2.010599
CAD 1.410025
CDF 2221.000229
CHF 0.80905
CLF 0.024076
CLP 944.499783
CNY 7.12675
CNH 7.127075
COP 3834.5
CRC 501.842642
CUC 1
CUP 26.5
CVE 96.375062
CZK 21.167017
DJF 177.720385
DKK 6.48429
DOP 64.297478
DZD 130.73859
EGP 47.410897
ERN 15
ETB 153.125038
EUR 0.86864
FJD 2.280599
FKP 0.766694
GBP 0.765295
GEL 2.714999
GGP 0.766694
GHS 10.924996
GIP 0.766694
GMD 73.500254
GNF 8690.999499
GTQ 7.661048
GYD 209.152772
HKD 7.774095
HNL 26.359678
HRK 6.547599
HTG 130.911876
HUF 335.9575
IDR 16709.4
ILS 3.261085
IMP 0.766694
INR 88.5796
IQD 1310
IRR 42112.494963
ISK 127.690319
JEP 0.766694
JMD 160.956848
JOD 0.709021
JPY 153.851993
KES 129.249938
KGS 87.450058
KHR 4026.999755
KMF 428.000397
KPW 899.974506
KRW 1447.345034
KWD 0.307151
KYD 0.83313
KZT 525.140102
LAK 21712.501945
LBP 89550.000328
LKR 304.599802
LRD 182.625047
LSL 17.379511
LTL 2.95274
LVL 0.60489
LYD 5.455036
MAD 9.301994
MDL 17.135125
MGA 4500.000477
MKD 53.533982
MMK 2099.235133
MNT 3586.705847
MOP 8.006805
MRU 38.249656
MUR 45.999806
MVR 15.40497
MWK 1736.000135
MXN 18.590735
MYR 4.182985
MZN 63.960089
NAD 17.380183
NGN 1442.505713
NIO 36.770126
NOK 10.20405
NPR 141.949154
NZD 1.766192
OMR 0.384503
PAB 0.999687
PEN 3.376503
PGK 4.216022
PHP 58.971497
PKR 280.850034
PLN 3.697112
PYG 7077.158694
QAR 3.641027
RON 4.416302
RSD 101.82802
RUB 81.356695
RWF 1450
SAR 3.75044
SBD 8.223823
SCR 13.741692
SDG 600.496025
SEK 9.55345
SGD 1.30536
SHP 0.750259
SLE 23.202463
SLL 20969.499529
SOS 571.509811
SRD 38.558003
STD 20697.981008
STN 21.45
SVC 8.747031
SYP 11058.728905
SZL 17.379793
THB 32.4545
TJS 9.257197
TMT 3.5
TND 2.960222
TOP 2.342104
TRY 42.10654
TTD 6.775354
TWD 30.925504
TZS 2459.806991
UAH 42.064759
UGX 3491.230589
UYU 39.758439
UZS 11987.501438
VES 227.27225
VND 26322.5
VUV 121.938877
WST 2.805824
XAF 570.814334
XAG 0.020681
XAU 0.000251
XCD 2.70255
XCG 1.801656
XDR 0.70875
XOF 570.497705
XPF 104.149552
YER 238.497171
ZAR 17.39149
ZMK 9001.177898
ZMW 22.392878
ZWL 321.999592
  • JRI

    0.0700

    13.77

    +0.51%

  • BCE

    0.1000

    22.39

    +0.45%

  • SCS

    0.0600

    15.93

    +0.38%

  • RIO

    1.1700

    69.06

    +1.69%

  • CMSC

    0.2400

    23.83

    +1.01%

  • BTI

    0.9000

    53.88

    +1.67%

  • BCC

    0.9700

    71.38

    +1.36%

  • GSK

    -0.1300

    46.69

    -0.28%

  • NGG

    0.2300

    75.37

    +0.31%

  • AZN

    -0.8800

    81.15

    -1.08%

  • RBGPF

    0.0000

    76

    0%

  • CMSD

    0.1900

    24.01

    +0.79%

  • VOD

    0.0700

    11.27

    +0.62%

  • BP

    0.5600

    35.68

    +1.57%

  • RELX

    0.2800

    44.58

    +0.63%

  • RYCEF

    0.1500

    15.1

    +0.99%

Physicists still divided about quantum world, 100 years on
Physicists still divided about quantum world, 100 years on / Photo: © AFP/File

Physicists still divided about quantum world, 100 years on

The theory of quantum mechanics has transformed daily life since being proposed a century ago, yet how it works remains a mystery -- and physicists are deeply divided about what is actually going on, a survey in the journal Nature said Wednesday.

Text size:

"Shut up and calculate!" is a famous quote in quantum physics that illustrates the frustration of scientists struggling to unravel one of the world's great paradoxes.

For the last century, equations based on quantum mechanics have consistently and accurately described the behaviour of extremely small objects.

However, no one knows what is happening in the physical reality behind the mathematics.

The problem started at the turn of the 20th century, when scientists realised that the classical principles of physics did not apply to things on the level on atoms.

Bafflingly, photons and electrons appear to behave like both particles and waves. They can also be in different positions simultaneously -- and have different speeds or levels of energy.

In 1925, Austrian physicist Erwin Schroedinger and Germany's Werner Heisenberg developed a set of complex mathematical tools that describe quantum mechanics using probabilities.

This "wave function" made it possible to predict the results of measurements of a particle.

These equations led to the development of a huge amount of modern technology, including lasers, LED lights, MRI scanners and the transistors used in computers and phones.

But the question remained: what exactly is happening in the world beyond the maths?

- A confusing cat -

To mark the 100th year of quantum mechanics, many of the world's leading physicists gathered last month on the German island of Heligoland, where Heisenberg wrote his famous equation.

More than 1,100 of them responded to a survey conducted by the leading scientific journal Nature.

The results showed there is a "striking lack of consensus among physicists about what quantum theory says about reality", Nature said in a statement.

More than a third -- 36 percent -- of the respondents favoured the mostly widely accepted theory, known as the Copenhagen interpretation.

In the classical world, everything has defined properties -- such as position or speed -- whether we observe them or not.

But this is not the case in the quantum realm, according to the Copenhagen interpretation developed by Heisenberg and Danish physicist Niels Bohr in the 1920s.

It is only when an observer measures a quantum object that it settles on a specific state from the possible options, goes the theory. This is described as its wave function "collapsing" into a single possibility.

The most famous depiction of this idea is Schroedinger's cat, which remains simultaneously alive and dead in a box -- until someone peeks inside.

The Copenhagen interpretation "is the simplest we have", Brazilian physics philosopher Decio Krause told Nature after responding to the survey.

Despite the theory's problems -- such as not explaining why measurement has this effect -- the alternatives "present other problems which, to me, are worse," he said.

- Enter the multiverse -

But the majority of the physicists supported other ideas.

Fifteen percent of the respondents opted for the "many worlds" interpretation, one of several theories in physics that propose we live in a multiverse.

It asserts that the wave function does not collapse, but instead branches off into as many universes as there are possible outcomes.

So when an observer measures a particle, they get the position for their world -- but it is in all other possible positions across many parallel universes.

"It requires a dramatic readjustment of our intuitions about the world, but to me that's just what we should expect from a fundamental theory of reality," US theoretical physicist Sean Carroll said in the survey.

The quantum experts were split on other big questions facing the field.

Is there some kind of boundary between the quantum and classical worlds, where the laws of physics suddenly change?

Forty-five percent of the physicists responded yes to this question -- and the exact same percentage responded no.

Just 24 percent said they were confident the quantum interpretation they chose was correct.

And three quarters believed that it will be replaced by a more comprehensive theory one day.

U.Chen--ThChM