The China Mail - Webb telescope may have already found most distant known galaxy

USD -
AED 3.672501
AFN 65.496617
ALL 81.00005
AMD 376.846763
ANG 1.79008
AOA 916.999746
ARS 1404.011905
AUD 1.413308
AWG 1.8025
AZN 1.698896
BAM 1.64226
BBD 2.013225
BDT 122.275216
BGN 1.67937
BHD 0.376971
BIF 2962.558673
BMD 1
BND 1.265482
BOB 6.907178
BRL 5.197301
BSD 0.999559
BTN 90.496883
BWP 13.113061
BYN 2.871549
BYR 19600
BZD 2.010286
CAD 1.355285
CDF 2209.999945
CHF 0.768705
CLF 0.02167
CLP 855.660136
CNY 6.91085
CNH 6.91352
COP 3665.47
CRC 494.655437
CUC 1
CUP 26.5
CVE 92.586917
CZK 20.395302
DJF 177.720247
DKK 6.28431
DOP 62.648518
DZD 129.421413
EGP 46.789601
ERN 15
ETB 155.350112
EUR 0.841135
FJD 2.1921
FKP 0.731721
GBP 0.73355
GEL 2.689858
GGP 0.731721
GHS 10.999761
GIP 0.731721
GMD 73.501055
GNF 8774.581423
GTQ 7.665406
GYD 209.121405
HKD 7.818025
HNL 26.502368
HRK 6.336902
HTG 131.114918
HUF 318.123017
IDR 16785
ILS 3.08274
IMP 0.731721
INR 90.58835
IQD 1310.5
IRR 42125.000158
ISK 121.979992
JEP 0.731721
JMD 156.391041
JOD 0.709029
JPY 154.430977
KES 128.840173
KGS 87.449783
KHR 4029.999526
KMF 414.398376
KPW 900.003053
KRW 1457.110076
KWD 0.30701
KYD 0.832959
KZT 491.773271
LAK 21474.999728
LBP 89702.217085
LKR 309.286401
LRD 186.625004
LSL 15.960319
LTL 2.95274
LVL 0.60489
LYD 6.301488
MAD 9.116985
MDL 16.91696
MGA 4435.999563
MKD 51.845871
MMK 2100.147418
MNT 3570.525201
MOP 8.048802
MRU 39.903383
MUR 45.679957
MVR 15.449743
MWK 1736.000021
MXN 17.19797
MYR 3.925015
MZN 63.899639
NAD 15.96025
NGN 1353.250247
NIO 36.720174
NOK 9.52164
NPR 144.79562
NZD 1.655235
OMR 0.384499
PAB 0.999551
PEN 3.357498
PGK 4.284982
PHP 58.506008
PKR 279.749909
PLN 3.54924
PYG 6578.947368
QAR 3.64125
RON 4.283496
RSD 98.691984
RUB 77.426347
RWF 1454
SAR 3.750835
SBD 8.058149
SCR 13.754362
SDG 601.499699
SEK 8.894501
SGD 1.265285
SHP 0.750259
SLE 24.350055
SLL 20969.499267
SOS 571.490866
SRD 37.890229
STD 20697.981008
STN 20.9
SVC 8.746069
SYP 11059.574895
SZL 15.960193
THB 31.239955
TJS 9.380697
TMT 3.51
TND 2.846026
TOP 2.40776
TRY 43.635195
TTD 6.779547
TWD 31.513796
TZS 2575.000281
UAH 43.048987
UGX 3553.510477
UYU 38.331227
UZS 12305.00008
VES 384.79041
VND 25885
VUV 119.800563
WST 2.713692
XAF 550.798542
XAG 0.012307
XAU 0.000198
XCD 2.70255
XCG 1.801442
XDR 0.685017
XOF 550.500489
XPF 100.674983
YER 238.324995
ZAR 15.942335
ZMK 9001.186468
ZMW 19.016311
ZWL 321.999592
  • RBGPF

    0.1000

    82.5

    +0.12%

  • SCS

    0.0200

    16.14

    +0.12%

  • RYCEF

    0.5300

    17.41

    +3.04%

  • CMSC

    0.1070

    23.692

    +0.45%

  • BCC

    0.7100

    89.73

    +0.79%

  • RIO

    0.3900

    97.24

    +0.4%

  • JRI

    -0.0300

    12.78

    -0.23%

  • BCE

    0.2100

    25.83

    +0.81%

  • CMSD

    0.1100

    24.08

    +0.46%

  • NGG

    0.3700

    88.76

    +0.42%

  • RELX

    -0.1900

    29.29

    -0.65%

  • VOD

    -0.2300

    15.25

    -1.51%

  • GSK

    -0.1900

    58.82

    -0.32%

  • AZN

    5.3900

    193.4

    +2.79%

  • BTI

    -0.9600

    60.19

    -1.59%

  • BP

    -2.2500

    36.97

    -6.09%

Webb telescope may have already found most distant known galaxy
Webb telescope may have already found most distant known galaxy / Photo: © University of Copenhagen/AFP

Webb telescope may have already found most distant known galaxy

Just a week after its first images were shown to the world, the James Webb Space Telescope may have found a galaxy that existed 13.5 billion years ago, a scientist who analyzed the data said Wednesday.

Text size:

Known as GLASS-z13, the galaxy dates back to 300 million years after the Big Bang, about 100 million years earlier than anything previously identified, Rohan Naidu of the Harvard Center for Astrophysics told AFP.

"We're potentially looking at the most distant starlight that anyone has ever seen," he said.

The more distant objects are from us, the longer it takes for their light to reach us, and so to gaze back into the distant universe is to see into the deep past.

Though GLASS-z13 existed in the earliest era of the universe, its exact age remains unknown as it could have formed anytime within the first 300 million years.

GLASS-z13 was spotted in so-called "early release" data from the orbiting observatory's main infrared imager, called NIRcam -- but the discovery was not revealed in the first image set published by NASA last week.

When translated from infrared into the visible spectrum, the galaxy appears as a blob of red with white in its center, as part of a wider image of the distant cosmos called a "deep field."

Naidu and colleagues -- a team totaling 25 astronomers from across the world -- have submitted their findings to a scientific journal.

For now, the research is posted on a "preprint" server, so it comes with the caveat that it has yet to be peer-reviewed -- but it has already set the global astronomy community abuzz.

"Astronomy records are crumbling already, and more are shaky," tweeted NASA's chief scientist Thomas Zurbuchen.

"Yes, I tend to only cheer once science results clear peer review. But, this looks very promising," he added.

Naidu said another team of astronomers led by Marco Castellano that worked on the same data has achieved similar conclusions, "so that gives us confidence."

- 'Work to be done' -

One of the great promises of Webb is its ability to find the earliest galaxies that formed after the Big Bang, 13.8 billion years ago.

Because these are so distant from Earth, by the time their light reaches us, it has been stretched by the expansion of the universe and shifted to the infrared region of the light spectrum, which Webb is equipped to detect with unprecedented clarity.

Naidu and colleagues combed through this infrared data of the distant universe, searching for a telltale signature of extremely distant galaxies.

Below a particular threshold of infrared wavelength, all photons -- packets of energy -- are absorbed by the neutral hydrogen of the universe that lies between the object and the observer.

By using data collected through different infrared filters pointed at the same region of space, they were able to detect where these drop-offs in photons occurred, from which they inferred the presence of these most distant galaxies.

"We searched all the early data for galaxies with this very striking signature, and these were the two systems that had by far the most compelling signature," said Naidu.

One of these is GLASS-z13, while the other, not as ancient, is GLASS-z11.

"There's strong evidence, but there's still work to be done," said Naidu.

In particular, the team wants to ask Webb's managers for telescope time to carry out spectroscopy -- an analysis of light that reveals detailed properties -- to measure its precise distance.

"Right now, our guess for the distance is based on what we don't see -- it would be great to have an answer for what we do see," said Naidu.

Already, however, the team have detected surprising properties.

For instance, the galaxy is the mass of a billion Suns, which is "potentially very surprising, and that is something we don't really understand" given how soon after the Big Bang it formed, Naidu said.

Launched last December and fully operational since last week, Webb is the most powerful space telescope ever built, with astronomers confident it will herald a new era of discovery.

J.Thompson--ThChM