The China Mail - Tracing uncertainty: Google harnesses quantum mechanics at California lab

USD -
AED 3.673042
AFN 65.503991
ALL 82.250403
AMD 381.770403
ANG 1.790403
AOA 917.000367
ARS 1440.198104
AUD 1.502404
AWG 1.8
AZN 1.70397
BAM 1.668223
BBD 2.014603
BDT 122.238002
BGN 1.66581
BHD 0.375335
BIF 2965
BMD 1
BND 1.291806
BOB 6.911523
BRL 5.419704
BSD 1.000264
BTN 90.4571
BWP 13.253269
BYN 2.948763
BYR 19600
BZD 2.011703
CAD 1.37805
CDF 2240.000362
CHF 0.795992
CLF 0.023203
CLP 910.250396
CNY 7.054504
CNH 7.05355
COP 3803.5
CRC 500.345448
CUC 1
CUP 26.5
CVE 94.27504
CZK 20.669104
DJF 177.720393
DKK 6.361804
DOP 63.850393
DZD 129.69404
EGP 47.313439
ERN 15
ETB 155.22504
EUR 0.851404
FJD 2.26525
FKP 0.744826
GBP 0.747831
GEL 2.703861
GGP 0.744826
GHS 11.48504
GIP 0.744826
GMD 73.000355
GNF 8691.000355
GTQ 7.661306
GYD 209.264835
HKD 7.77985
HNL 26.203838
HRK 6.417704
HTG 131.108249
HUF 327.990388
IDR 16633.75
ILS 3.222795
IMP 0.744826
INR 90.552404
IQD 1310
IRR 42122.503816
ISK 126.403814
JEP 0.744826
JMD 160.152168
JOD 0.70904
JPY 155.75604
KES 128.903801
KGS 87.450384
KHR 4006.00035
KMF 419.503794
KPW 899.99623
KRW 1474.980383
KWD 0.306704
KYD 0.833596
KZT 521.66941
LAK 21680.000349
LBP 89550.000349
LKR 309.078037
LRD 177.025039
LSL 16.880381
LTL 2.95274
LVL 0.60489
LYD 5.420381
MAD 9.19125
MDL 16.909049
MGA 4510.000347
MKD 52.398791
MMK 2100.268185
MNT 3547.376613
MOP 8.020795
MRU 39.740379
MUR 45.903741
MVR 15.403739
MWK 1736.503736
MXN 18.014404
MYR 4.097304
MZN 63.910377
NAD 16.880377
NGN 1452.570377
NIO 36.775039
NOK 10.137304
NPR 144.731702
NZD 1.72295
OMR 0.382805
PAB 1.000264
PEN 3.603708
PGK 4.259204
PHP 59.115038
PKR 280.225038
PLN 3.59745
PYG 6718.782652
QAR 3.641104
RON 4.335904
RSD 99.975303
RUB 79.673577
RWF 1451
SAR 3.75231
SBD 8.176752
SCR 14.958069
SDG 601.503676
SEK 9.269904
SGD 1.292038
SHP 0.750259
SLE 24.125038
SLL 20969.503664
SOS 571.503662
SRD 38.548038
STD 20697.981008
STN 21.25
SVC 8.752207
SYP 11058.380716
SZL 16.880369
THB 31.520369
TJS 9.192334
TMT 3.51
TND 2.916038
TOP 2.40776
TRY 42.696104
TTD 6.787844
TWD 31.335104
TZS 2470.000335
UAH 42.263496
UGX 3555.146134
UYU 39.25315
UZS 12002.503617
VES 267.43975
VND 26306
VUV 121.486164
WST 2.783946
XAF 559.50409
XAG 0.016138
XAU 0.000232
XCD 2.70255
XCG 1.802728
XDR 0.695185
XOF 558.000332
XPF 102.075037
YER 238.503589
ZAR 16.875405
ZMK 9001.203584
ZMW 23.081057
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    81.17

    0%

  • JRI

    -0.0200

    13.7

    -0.15%

  • BCC

    0.2500

    76.51

    +0.33%

  • CMSD

    -0.1500

    23.25

    -0.65%

  • NGG

    0.2400

    74.93

    +0.32%

  • GSK

    -0.0700

    48.81

    -0.14%

  • RYCEF

    -0.2500

    14.6

    -1.71%

  • RIO

    -1.0800

    75.66

    -1.43%

  • CMSC

    -0.1300

    23.3

    -0.56%

  • RELX

    0.1000

    40.38

    +0.25%

  • BCE

    0.3100

    23.71

    +1.31%

  • VOD

    0.0500

    12.59

    +0.4%

  • BTI

    -1.2700

    57.1

    -2.22%

  • AZN

    -0.4600

    89.83

    -0.51%

  • BP

    -0.2700

    35.26

    -0.77%

Tracing uncertainty: Google harnesses quantum mechanics at California lab
Tracing uncertainty: Google harnesses quantum mechanics at California lab / Photo: © AFP

Tracing uncertainty: Google harnesses quantum mechanics at California lab

Outside, balmy September sunshine warms an idyllic coast, as California basks in yet another perfect day.

Text size:

Inside, it's minus 460 Fahrenheit (-273 Celsius) in some spots, pockets of cold that bristle with the impossible physics of quantum mechanics -- a science in which things can simultaneously exist, not exist and also be something in between.

This is Google's Quantum AI laboratory, where dozens of super-smart people labor in an office kitted out with climbing walls and electric bikes to shape the next generation of computers -- a generation that will be unlike anything users currently have in their pockets or offices.

"It is a new type of computer that uses quantum mechanics to do computations and allows us... to solve problems that would otherwise be impossible," explains Erik Lucero, lead engineer at the campus near Santa Barbara.

"It's not going to replace your mobile phone, your desktop; it's going to be working in parallel with those things."

Quantum mechanics is a field of research that scientists say could be used one day to help limit global warming, design city traffic systems or develop powerful new drugs.

The promises are so great that governments, tech giants and start-ups around the world are investing billions of dollars in it, employing some of the biggest brains around.

- Schrodinger's cat -

Old fashioned computing is built on the idea of binary certainty: tens of thousands of "bits" of data that are each definitely either "on" or "off," represented by either a one or a zero.

Quantum computing uses uncertainty: its "qubits" can exist in a state of both one-ness and zero-ness in what is called a superposition.

The most famous illustration of a quantum superposition is Schrodinger's cat -- a hypothetical animal locked in a box with a flask of poison which may or may not shatter.

While the box is shut, the cat is simultaneously alive and dead. But once you interfere with the quantum state and open the box, the question of the cat's life or death is resolved.

Quantum computers use this uncertainty to perform lots of seemingly contradictory calculations at the same time -- a bit like being able to go down every possible route in a maze all at once, instead of trying each one in series until you find the right path.

The difficulty for quantum computer designers is getting these qubits to maintain their superposition long enough to make a calculation.

As soon as something interferes with them -- noise, muck, the wrong temperature -- the superposition collapses, and you're left with a random and likely nonsensical answer.

The quantum computer Google showed off to journalists resembles a steampunk wedding cake hung upside-down from a support structure.

Each layer of metal and curved wires gets progressively colder, down to the final stage, where the palm-sized processor is cooled to just 10 Millikelvin, or about -460 Fahrenheit (-273 Celsius).

That temperature -- only a shade above absolute zero, the lowest temperature possible in the universe -- is vital for the superconductivity Google's design relies on.

While the layer-cake computer is not huge -- about half a person high -- a decent amount of lab space is taken up with the equipment to cool it -- pipes whoosh overhead with helium dilutions compressing and expanding, using the same process that keeps your refrigerator cold.

- Future -

But... what does it all actually do?

Well, says Daniel Lidar, an expert in quantum systems at the University of Southern California, it's a field that promises much when it matures, but which is still a toddler.

"We've learned how to crawl but we've certainly not yet learned how to how to walk or jump or run," he told AFP.

The key to its growth will be solving the problem of the superpositional collapses -- the opening of the cat's box -- to allow for meaningful calculations.

As this process of error correction improves, problems such as city traffic optimization, which is fiendishly hard on a classical computer because of the number of independent variables involved -- the cars themselves -- could come within reach, said Lidar.

"On (an error-corrected) quantum computer, you could solve that problem," he said.

For Lucero and his colleagues, these future possibilities are worth the brain ache.

"Quantum mechanics is one of the best theories that we have today to experience nature. This is a computer that speaks the language of nature.

"And if we want to go out and figure out these really challenging problems, to help save our planet, and things like climate change, than having a computer that can do exactly that, I'd want that."

P.Ho--ThChM