The China Mail - 'Solids full of holes': Nobel-winning materials explained

USD -
AED 3.672498
AFN 65.498106
ALL 81.051571
AMD 375.859332
ANG 1.79008
AOA 916.497158
ARS 1416.446495
AUD 1.413497
AWG 1.8
AZN 1.695264
BAM 1.642701
BBD 2.007895
BDT 121.837729
BGN 1.67937
BHD 0.376981
BIF 2949.857215
BMD 1
BND 1.265076
BOB 6.903242
BRL 5.194898
BSD 0.996892
BTN 90.375901
BWP 13.137914
BYN 2.873173
BYR 19600
BZD 2.004955
CAD 1.356445
CDF 2215.000232
CHF 0.766405
CLF 0.021628
CLP 853.970006
CNY 6.9225
CNH 6.91111
COP 3673.08
CRC 494.204603
CUC 1
CUP 26.5
CVE 92.612579
CZK 20.361605
DJF 177.523938
DKK 6.275825
DOP 62.758273
DZD 129.497006
EGP 46.881699
ERN 15
ETB 155.496052
EUR 0.83996
FJD 2.192099
FKP 0.731721
GBP 0.73155
GEL 2.690096
GGP 0.731721
GHS 10.970939
GIP 0.731721
GMD 73.501083
GNF 8751.926558
GTQ 7.647373
GYD 208.567109
HKD 7.81758
HNL 26.333781
HRK 6.329797
HTG 130.732404
HUF 317.258982
IDR 16798
ILS 3.084801
IMP 0.731721
INR 90.52085
IQD 1305.980178
IRR 42125.000158
ISK 121.802706
JEP 0.731721
JMD 155.929783
JOD 0.708991
JPY 155.210977
KES 128.896279
KGS 87.450406
KHR 4020.661851
KMF 413.999932
KPW 900.003053
KRW 1462.055014
KWD 0.30709
KYD 0.830758
KZT 492.323198
LAK 21424.491853
LBP 89570.078396
LKR 308.550311
LRD 185.426737
LSL 15.97833
LTL 2.952739
LVL 0.60489
LYD 6.302705
MAD 9.117504
MDL 16.932639
MGA 4376.784814
MKD 51.774104
MMK 2100.147418
MNT 3570.525201
MOP 8.025869
MRU 39.586763
MUR 45.679579
MVR 15.459738
MWK 1728.624223
MXN 17.194145
MYR 3.923498
MZN 63.76003
NAD 15.97833
NGN 1354.939889
NIO 36.687385
NOK 9.517145
NPR 144.601881
NZD 1.654635
OMR 0.384497
PAB 0.996892
PEN 3.348144
PGK 4.337309
PHP 58.522499
PKR 278.761885
PLN 3.53947
PYG 6573.156392
QAR 3.634035
RON 4.276802
RSD 98.549011
RUB 77.251007
RWF 1455.48463
SAR 3.75074
SBD 8.054878
SCR 13.836531
SDG 601.500203
SEK 8.92498
SGD 1.26597
SHP 0.750259
SLE 24.524979
SLL 20969.499267
SOS 568.704855
SRD 37.971496
STD 20697.981008
STN 20.57786
SVC 8.723333
SYP 11059.574895
SZL 15.970939
THB 31.168005
TJS 9.336094
TMT 3.5
TND 2.879712
TOP 2.40776
TRY 43.633798
TTD 6.753738
TWD 31.523799
TZS 2586.096953
UAH 42.973963
UGX 3548.630942
UYU 38.224264
UZS 12265.141398
VES 384.79041
VND 25885
VUV 119.800563
WST 2.713692
XAF 550.946582
XAG 0.012177
XAU 0.000198
XCD 2.70255
XCG 1.796657
XDR 0.685201
XOF 550.946582
XPF 100.167141
YER 238.349504
ZAR 15.926345
ZMK 9001.203383
ZMW 18.8468
ZWL 321.999592
  • JRI

    0.0350

    12.82

    +0.27%

  • BCE

    0.1750

    25.79

    +0.68%

  • RIO

    -0.7350

    96.12

    -0.76%

  • AZN

    5.2650

    193.36

    +2.72%

  • SCS

    0.0200

    16.14

    +0.12%

  • CMSD

    0.0200

    23.97

    +0.08%

  • GSK

    -0.1600

    58.86

    -0.27%

  • VOD

    -0.0600

    15.42

    -0.39%

  • NGG

    -0.2900

    88.1

    -0.33%

  • CMSC

    0.0750

    23.585

    +0.32%

  • RELX

    -0.1950

    29.28

    -0.67%

  • RYCEF

    0.5300

    17.41

    +3.04%

  • BCC

    1.3750

    90.475

    +1.52%

  • BTI

    -1.1850

    59.96

    -1.98%

  • RBGPF

    0.1000

    82.5

    +0.12%

  • BP

    -2.5150

    36.7

    -6.85%

'Solids full of holes': Nobel-winning materials explained
'Solids full of holes': Nobel-winning materials explained / Photo: © AFP

'Solids full of holes': Nobel-winning materials explained

The chemistry Nobel was awarded on Wednesday to three scientists who discovered a revolutionary way of making materials full of tiny holes that can do everything from sucking water out of the desert air to capturing climate-warming carbon dioxide.

Text size:

The particularly roomy molecular architecture, called metal-organic frameworks, has also allowed scientists to filter "forever chemicals" from water, smuggle drugs into bodies -- and even slow the ripening of fruit.

After Japan's Susumu Kitagawa, UK-born Richard Robson and American-Jordanian Omar Yaghi won their long-anticipated Nobel Prize, here is what you need to know about their discoveries.

- What are metal-organic frameworks? -

Imagine you turn on the hot water for your morning shower, David Fairen-Jimenez, a professor who studies metal-organic frameworks (MOFs) at the University of Cambridge, told AFP.

The mirror in your bathroom fogs up as water molecules collect on its flat surface -- but it can only absorb so much.

Now imagine this mirror was made of a material that was extremely porous -- full of tiny holes -- and these holes were "the size of a water molecule," Fairen-Jimenez said.

This material would be able to hold far more water -- or other gases -- than seems possible.

At the Nobel ceremony, this secret storage ability was compared to Hermione's magical handbag in Harry Potter.

The inside space of a couple of grams of a particular MOF "holds an area as big as a football pitch," the Nobels said in a statement.

Ross Forgan, a professor of materials chemistry at the University of Glasgow, told AFP to think of MOFs as "solids that are full of holes".

They could look essentially like table salt, but "they have a ridiculously high storage capacity inside them because they are hollow -- they can soak up other molecules like a sponge."

- What did the Nobel-winners do? -

In the 1980s, Robson taught his students at Australia's University of Melbourne about molecular structures using wooden balls that played the role of atoms, connected by rods representing chemical bonds.

One day this inspired him to try to link different kinds of molecules together. By 1989, he had drawn out a crystal structure similar to a diamond's -- except that it was full of massive holes.

French researcher David Farrusseng compared the structure of MOFs to the Eiffel Tower. "By interlocking all the iron beams -- horizontal, vertical, and diagonal -- we see cavities appear," he told AFP.

However Robson's holey structures were unstable, and it took years before anyone could figure out what to do with them.

In 1997, Kitagawa finally managed to show that a MOF could absorb and release methane and other gases.

It was Yaghi who coined the term metal-organic frameworks and demonstrated to the world just how much room there was in materials made from them.

- What can they do? -

Because these frameworks can be assembled in different ways -- somewhat like playing with Lego -- companies and labs around the world have been testing out their capabilities.

"This is a field that's generating incredible enthusiasm and is moving extremely fast," Thierry Loiseau of French research centre CNRS told AFP.

More than 100,000 different kinds have already been reported in scientific literature, according to a Cambridge University database.

"Every single month, there are 500 new MOFs," Fairen-Jimenez said.

He and Forgan agreed that likely the greatest impact MOFs will have on the world are in the areas of capturing carbon and delivering drugs.

Though much hyped, efforts to capture carbon dioxide -- the driver of human-caused global warming -- have so far failed to live up to their promise.

Forgan said he was once "a bit sceptical about carbon capture, but now we're finally refining (the MOFs) to the point where they are meeting all the industrial requirements".

Canadian chemical producer BASF says it is the first company to produce hundreds of tons of MOFs a year, for carbon capture efforts.

And Yaghi himself has demonstrated that a MOF material was able to harvest water vapour from the night air in the desert US state of Arizona.

Once the rising Sun heated up the material, his team collected the drinkable water.

Q.Yam--ThChM