The China Mail - Click chemistry, Nobel-winning science that may 'change the world'

USD -
AED 3.672504
AFN 66.344071
ALL 83.58702
AMD 382.869053
ANG 1.789982
AOA 917.000367
ARS 1405.057166
AUD 1.540832
AWG 1.805
AZN 1.70397
BAM 1.691481
BBD 2.013336
BDT 122.007014
BGN 1.69079
BHD 0.374011
BIF 2943.839757
BMD 1
BND 1.3018
BOB 6.91701
BRL 5.332404
BSD 0.999615
BTN 88.59887
BWP 13.420625
BYN 3.406804
BYR 19600
BZD 2.010326
CAD 1.40485
CDF 2150.000362
CHF 0.80538
CLF 0.024066
CLP 944.120396
CNY 7.11935
CNH 7.12515
COP 3780
CRC 501.883251
CUC 1
CUP 26.5
CVE 95.363087
CZK 21.009504
DJF 177.720393
DKK 6.457204
DOP 64.223754
DZD 129.411663
EGP 46.950698
ERN 15
ETB 154.306137
EUR 0.86435
FJD 2.28425
FKP 0.763092
GBP 0.759936
GEL 2.70504
GGP 0.763092
GHS 10.930743
GIP 0.763092
GMD 73.000355
GNF 8677.076622
GTQ 7.659909
GYD 209.133877
HKD 7.77703
HNL 26.282902
HRK 6.514104
HTG 133.048509
HUF 332.660388
IDR 16685.5
ILS 3.24758
IMP 0.763092
INR 88.639504
IQD 1309.474904
IRR 42100.000352
ISK 126.580386
JEP 0.763092
JMD 160.439
JOD 0.70904
JPY 153.43504
KES 129.203801
KGS 87.450384
KHR 4023.264362
KMF 421.00035
KPW 899.97951
KRW 1455.990383
KWD 0.306904
KYD 0.83302
KZT 524.767675
LAK 21703.220673
LBP 89512.834262
LKR 304.684561
LRD 182.526573
LSL 17.315523
LTL 2.95274
LVL 0.60489
LYD 5.458091
MAD 9.265955
MDL 17.042585
MGA 4492.856402
MKD 53.206947
MMK 2099.259581
MNT 3583.067197
MOP 8.007472
MRU 39.595594
MUR 45.910378
MVR 15.405039
MWK 1733.369658
MXN 18.44605
MYR 4.176039
MZN 63.950377
NAD 17.315148
NGN 1436.000344
NIO 36.782862
NOK 10.153804
NPR 141.758018
NZD 1.777162
OMR 0.38142
PAB 0.999671
PEN 3.37342
PGK 4.220486
PHP 58.805504
PKR 282.656184
PLN 3.665615
PYG 7072.77311
QAR 3.643196
RON 4.398804
RSD 102.170373
RUB 80.869377
RWF 1452.42265
SAR 3.750713
SBD 8.230592
SCR 13.652393
SDG 600.503676
SEK 9.528504
SGD 1.301038
SHP 0.750259
SLE 23.203667
SLL 20969.499529
SOS 571.228422
SRD 38.599038
STD 20697.981008
STN 21.189281
SVC 8.746265
SYP 11055.784093
SZL 17.321588
THB 32.395038
TJS 9.226139
TMT 3.51
TND 2.954772
TOP 2.342104
TRY 42.211304
TTD 6.77604
TWD 30.981804
TZS 2455.000335
UAH 41.915651
UGX 3498.408635
UYU 39.809213
UZS 12055.19496
VES 228.194038
VND 26310
VUV 122.098254
WST 2.816104
XAF 567.301896
XAG 0.020687
XAU 0.00025
XCD 2.70255
XCG 1.801521
XDR 0.707015
XOF 567.306803
XPF 103.14423
YER 238.503589
ZAR 17.29905
ZMK 9001.203584
ZMW 22.615629
ZWL 321.999592
  • RBGPF

    0.0000

    76

    0%

  • SCS

    0.0000

    15.76

    0%

  • CMSD

    0.0900

    24.1

    +0.37%

  • BCC

    -0.0900

    70.64

    -0.13%

  • JRI

    -0.0100

    13.74

    -0.07%

  • GSK

    -0.4700

    46.63

    -1.01%

  • RYCEF

    -0.1800

    14.82

    -1.21%

  • RIO

    0.0600

    69.33

    +0.09%

  • CMSC

    0.0700

    23.85

    +0.29%

  • NGG

    1.4600

    77.75

    +1.88%

  • RELX

    -1.1200

    42.27

    -2.65%

  • VOD

    0.2400

    11.58

    +2.07%

  • BCE

    0.0200

    23.19

    +0.09%

  • AZN

    0.8100

    84.58

    +0.96%

  • BTI

    0.3800

    54.59

    +0.7%

  • BP

    0.7600

    36.58

    +2.08%

Click chemistry, Nobel-winning science that may 'change the world'
Click chemistry, Nobel-winning science that may 'change the world' / Photo: © AFP/File

Click chemistry, Nobel-winning science that may 'change the world'

The Nobel Chemistry Prize was awarded to three scientists on Tuesday for their work on click chemistry, a way to snap molecules together like Lego that experts say will soon "change the world".

Text size:

But how exactly does it work?

Imagine two people walking through a mostly empty room towards each other then shaking hands.

"That's how a classical chemical reaction is done," said Benjamin Schumann, a chemist at Imperial College, London.

But what if there was lots of furniture and other people clogging up the room?

"They might not meet each other," Schumann said.

Now imagine those people were molecules, tiny groups of atoms that form the basis of chemistry.

"Click chemistry makes it possible for two molecules that are in an environment where you have lots of other things around" to meet and join with each other, he told AFP.

The way click chemistry snaps together molecular building blocks is also often compared to Lego.

But Carolyn Bertozzi, who shared this year's chemistry Nobel with Barry Sharpless and Morten Meldal, said it would take a very special kind of Lego.

Even if two Legos were "surrounded by millions of other very similar plastic toys" they would only click in to each other, she told AFP.

- 'Changed the playing field' -

Around the year 2000, Sharpless and Meldal separately discovered a specific chemical reaction using copper ions as a catalyst which "changed the playing field" and became "the cream of the crop", said Silvia Diez-Gonzalez, a chemist at the Imperial College, London.

Copper has many advantages, including that reactions could involve water and be done at room temperature rather than at high heat which can complicate matters.

This particular way of connecting molecules was far more flexible, efficient and targeted than had ever been possible before.

Since its discovery, chemists have been finding out all the different kinds of molecular architecture they can build with their special new Lego blocks.

"The applications are almost endless," said Tom Brown, a British chemist at Oxford University that has worked on DNA click chemistry.

But there was one problem with using copper as a catalyst. It can be toxic for the cells of living organisms -- such as humans.

So Bertozzi built on the foundations of Sharpless and Meldal's work, designing a copperless "way of using click chemistry with biological systems without killing them," Diez-Gonzalez said.

Previously the molecules clicked together in a straight flat line -- like a seat belt -- but Bertozzi discovered that forcing them "to be a bit bent" made the reaction more stable, Diez-Gonzalez said.

Bertozzi called the field she created bioorthogonal chemistry -- orthogonal means intersecting at right angles.

- 'Tip of the iceberg' -

Diez-Gonzalez said she was "a bit surprised" that the field had been awarded with a Nobel so soon, because "there are not that many commercial applications out there yet".

But the future looks bright.

"We're kind of at the tip of the iceberg," said American Chemical Society President Angela Wilson, adding that this "chemistry is going to change the world."

Bertozzi said that there are so many potential uses for click chemistry, that "I can't even really enumerate them".

One use is for developing new targeted medicines, some of which could involve "doing chemistry inside human patients to make sure that drugs go to the right place," she told the Nobel conference.

Her lab has started research on potential treatments for severe Covid, she added.

Another hope is that it can lead to a more targeted way to diagnose and treat cancer, as well make chemotherapy have fewer, less severe side effects.

It has even created a way to make the bacteria that causes Legionnaires' disease become fluorescent so it easier to spot in water supplies.

Already, click chemistry has been used "to create some very, very durable polymers" that protect against heat, as well as in forms of glue in nano-chemistry, Meldal told AFP.

 

"I think it's going to completely revolutionise everything from medicine to materials," she said.

M.Zhou--ThChM